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Quantum error correction is required to compensate for the
fragility of the state of a quantum computer. We report the
first experimental implementations of quantum error correc-
tion and confirm the expected state stabilization. A precise
analysis of the decay behavior is performed in alanine and a
full implementation of the error correction procedure is real-
ized in trichloroethylene. In NMR computing, however, a net
improvement in the signal-to-noise would require very high
polarization. The experiment implemented the 3-bit code for
phase errors using liquid state state NMR.

PACS numbers: 03.65.Bz, 89.70.+c,89.80.th,02.70.—¢

Quantum computers exploit the superposition princi-
ple to solve some problems much more efficiently than
any known algorithm for their classical counterparts.
These problems include factoring large numbers [1], com-
binatorial searching [2] and simulations of quantum sys-
tems [3-5]. Exploiting the power of quantum compu-
tation was thought to be physically impossible due to
the extreme fragility of quantum information [6,7]. This
judgment seems to be overly pessimistic as quantum
error-correction techniques [8-10] were found to protect
quantum information against corruption. For physically
reasonable models of decoherence a quantum computa-
tion can be as long as desired with arbitrarily accurate
answers, provided the error rate is below a threshold
value [11-14]. Thus decoherence and imprecision are no
longer considered insurmountable obstacles to realizing a
quantum computer.

The chief remaining obstacle to quantum computing is
the difficulty of finding suitable physical systems whose
quantum states can be accurately controlled. Devices
based on ion traps [15] have so far been limited to two
bits [16]. Recently, liquid state NMR techniques have
been shown to be capable of quantum computations with
three bits [17,18]. Thus it is possible, for the first time, to
implement the simplest quantum error-correcting codes,
and so test these ideas in physical systems.

In room temperature liquid state NMR, one can co-
herently manipulate the internal states of the coupled
spin % nuclei in each of an ensemble of molecules sub-
ject to a large external magnetic field. Although the set
of accessible states is highly mixed, it has been shown
that experimental methods exist that can be used to iso-
late the pure state behavior of the system, thus permit-

ting limited application of NMR to quantum computa-
tion [19,20]. A detailed description of these methods can
be found in [21]. Here we describe the implementation
of a quantum error-correcting code which compensates
for small phase errors. The behavior of this code was
measured for two systems: The '3C labeled carbons in
alanine subject to the correlated phase errors induced by
diffusion in a pulsed magnetic field gradient, and the pro-
ton and two labeled carbons in trichloroethylene (TCE)
subject to its natural relaxation processes. In alanine,
we observed correction of first-order errors using a pre-
cise analysis of the decay behavior of a given input state.
The full error-correction procedure (including the final
Toffoli gate) was implemented in TCE to demonstrate
the expected state preservation of an arbitrary coherent
input.

Although our experiments validate the usefulness of er-
ror correction for quantum computing with pure states,
there is a substantial loss of signal associated with the
use of ancilla spins in weakly polarized systems. We ar-
gue that in this setting, the loss of signal involved in
exploiting ancillas removes any advantage for computa-
tion gained by error correction, at least unless the system
is sufficiently polarized to enable the generation of nearly
pure states. Nevertheless, our experiments demonstrate
that error-correcting codes can be implemented, and that
they behave as predicted.

The simple three-bit quantum error-correcting code
used here is designed to compensate to first order for
small random phase fluctuations. These fluctuations con-
stitute a random evolution of the state
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where b; is 0 or 1, §; is a random phase variable, and ¢ is
the Pauli matrix acting on the i’th spin. The 6; depend
on the error rates in the model, which is described in
detail below.

The error-correcting code is a phase variant of the
classical three bit majority code with a decoding tech-
nique that preserves the quantum information in the en-
coded state [9]. Let |+£) = (|0) £ [1))/v/2. The state
(|000) + B]100)) is encoded as a| + ++) + B8] — — —)
by a unitary transformation. The first-order expansion
of the operator in Eq. (1) in the small random phases is
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which evolves the encoded state to
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The different errors map the encoded state into or-
thogonal subspaces. By measuring the two observables
olo? and o202 the subspace can be identified. Thus one
can determine which error occurred without destroying
the encoded quantum information. After decoding, the
original state of the first spin can then be restored by a
unitary transformation, while the other two spins con-
tain information (the syndrome) about the error which
occurred. A network which accomplishes the encoding,
decoding and error-correction steps is shown in Figure 1.

In NMR experiments, non-unitary processes are clas-
sified as spin-lattice and spin-spin relaxation [23,24]. For
spin % nuclei, both processes are due to fluctuating local
magnetic fields. The three spin code corrects for errors
due to locally fluctuating fields along the z axis.

We focus on a weakly coupled three-spin system where
the strongest contribution to coherence loss is from ex-
ternal fields which contribute the Hamiltonian

Hep = o'T-B(t) + 9T - B*(t) +°T° - B(1) , (4)

where I = (Ii,Iy,1,) and I, = 3o, (u =x,y,2). The z
and y components of the external fields do not contribute
significantly to loss of coherence in our experiments. The
induced random phase fluctuations are identical to those
described in Eq. (1). As a result, the off-diagonal ele-
ments of the density matrix decay exponentially at a rate
which depends on the fields B* at each spin, their gyro-
magnetic ratios v*, the coherence order and the zero fre-
quency components of the spectral densities of the fields.
The “coherence order” is the difference between the total
angular momenta along the z-axis of the two states |b),
[b') (in units of //2) which define a matrix element |b')(b|
[25].

To obtain a clean demonstration of error correction,
a simple error model was implemented precisely in the
case of alanine. This implementation used the random
molecular motion induced by diffusion in a constant field
gradient to mimic the effect of a slowly varying random
field. This is achieved by turning on an external field
gradient V,B = 0B,/dz across the sample for a time
0. This modifies the magnetization in the sample with
a phase varying linearly along the z direction according
to 0¢/0z = néy0B,/dz, where n is the coherence order
of the density matrix element and + is the gyromagnetic
ratio. A reverse gradient is used to refocus the magne-
tization after allowing molecular diffusion to take place
for amount of time ¢. As a result of random spin dis-
placement Az, the phases of the spins are not returned
to their original values but are randomly modified by
(ndy0B,/0z)Az. For a Gaussian displacement profile

with a width of +/2Dt, the effective decoherence time of
this process is proportional to the diffusion constant D
as well as to the square of the coherence order n [25]:
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This artificially induced “decoherence” in the alanine ex-
periments is an example of completely correlated phase
scrambling. This occurs naturally if all the spins have
equal gyromagnetic ratios in the slow motion regime. We
used TCE to demonstrate error-correction in the pres-
ence of the natural decoherence.

Most NMR, experiments are described using the prod-
uct operator formalism [26]. This formalism describes
the state as a sum of products of the operators I%, I, T¢.
The identity component of such a sum is the same for any
state and is usually suppressed to yield the “deviation”
(traceless) density matrix. The effect of error-correction
can be understood from the point of view of this formal-
ism. As an example, consider encoding the state I} using
two ancillas initially in their ground states. The initial
state is described by

pa=L(G1+E)(31+L). (6)
After encoding the state is
pe = ; (L+L+E+4LEL) . (7)

In the case of completely correlated phase errors, this
decays as
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Decoding and error correction mixes these states together
so as to cancel the initial decay of the first spin,

9
pt = L9V —e %) ~ TL(1- §t2/r2 +--).

9)

The effect of error correction can be seen from the ab-
sence of terms depending linearly on ¢.

In the alanine experiments, each of the four product
operators in the sum of Eq. 6 was realized in a separate
experiment, and the final state after encoding and de-
coding inferred by adding the results. The loss of polar-
ization over time in each product operator was measured
explicitly in each experiment. The results were added
computationally to simulate the effect of the Toffoli gate
and are shown in Figure 2. This method has the advan-
tage of permitting a detailed analysis of the relevant re-
laxation pathways. The initial slopes of the decay curves
for each operator were estimated and added as required



for error correction. The resulting slope is zero within
experimental errors. Thus the net curve has quadratic
behavior for small delays.

The goal of our experiments with TCE was to establish
the behavior of encoding/decoding and error correction
on all possible initial states subject to the natural deco-
herence and dephasing. The spins were prepared in the
states

PG RIG1+TE), (10)
with p one of the four inputs 1, I, IL, I,. Any possible
input is just a linear combination of these four states.
We used gradient methods to directly generate the four
states of Eq. 10. They were then subjected to pulse se-
quences for encoding, decoherence and decoding (exper-
iment I). The reduced density matrix on the first spin
(the output) was measured. In the second experiment
(IT) decoding was followed by error correction (i.e. phys-
ical implementation of the Toffoli gate so that the whole
circuit of Fig.1 was implemented) before the output was
determined. Decoherence was implemented in two ways.
The first involved a variable delay during which natural
dephasing takes place. In the second implementation, we
inserted pulses for each possible phase error (sign flips
on at most one spin). Pulse sequences can be found in
[27]. Ideally the output would be identical to the input.
The measured outputs were compared to the ideal ones
by computing the “entanglement fidelity” [28]. This is
a useful measure of how well the quantum information
in the input is preserved. Entanglement fidelity is the
sum of the correct polarization left in the output state
for each input. More precisely, given input IL, let f, be
the relative polarization of I in the output compared to
the input. Then f = X(1+ f, + f, + f>), this formula is
correct for processes which do not affect the completely
mixed state %1. The results for nine different delays are
shown in Figure 3. The curves show that error correction
decreases the initial slope by a factor of ~ 10 (by square
fit to the logarithm).

Our demonstration of error-correction does not imply
that error-correction can be used to overcome the prob-
lems of high temperature ensemble quantum computing.
In this model of quantum computing, the initial state can
be described as a small, linear deviation from the infinite
temperature equilibrium. Thus, the deviation is propor-
tional to a Hamiltonian of n weakly interacting particles.
In this limit no method of error-correction based on ex-
ternally applied, time dependent fields can improve the
polarization of any particle by more than a factor propor-
tional to v/n [29]. If one wishes to use error-correction an
even bigger problem is encountered: The initial state of
the ancillas used for each encoding/decoding cycle must
be pure. In the high temperature regime, the best we can
do is to generate a pseudo pure deviation in the ancillas.
Unfortunately, this deviation has to be created simulta-
neously on all ancillas, leading to an exponential reduc-
tion in polarization as a function of the total number of

ancillas required [30]. This reduction in polarization is
not recoverable by error correction. In fact, further anal-
ysis shows that an initial polarization of order unity is
required for error correction to yield a net gain. Another
problem is the inability to reuse ancilla bits. This has two
consequences. The first is that decoherence rapidly re-
moves information in the state, leading to computations
which are logarithmically bounded in time [31]. Second,
the total number of ancillas required is proportional to
the time-space product of the computation, rather than
to a power of its logarithm.

Our work shows that liquid state NMR can be used
to test fundamental ideas in quantum computing. Our
experiments demonstrate for the first time the state pre-
serving effect of the three bit phase error-correcting code.
The first-order behavior was established to high accuracy
for a specific state in alanine, while the overall effect was
observed and the improvement in state recovery verified
in TCE. These experiments confirm not only the validity
of theories of quantum error correction in a simple case,
but also demonstrate the ability, in liquid state NMR,
to control the state of three spin-half particles. This is
an important advance for quantum computing, as this
is the first system where this degree of control has been
successfully implemented.
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FIG. 1. Network for encoding, decoding and error correc-
tion. The circuit describes the evolution of the 3 bits as a
function of time. The gate e>x corresponds to a control-not.
R,(90) represent a rotation by an angle of 7/2 around the
y-axis of a single bit. The Toffoli gate flips the target bit (x)
if the two control bits (e) are in the state |1). A detailed
implementation of these gates is given in [17]. The informa-
tion carrying bit is carbon 1 (see Figures 2 and 3) in both
experiments.
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FIG. 2. The intensities of the magnetization of the first
spin after applying the dephasing and decoding procedures
described in the text, together with single exponential fits
to the intensities versus the dephasing time 7. The relevant
coupling frequencies are 53.9H z and 34.8 Hz between adjacent
carbons. The three mixed states I;, Iir2 , I;If, evolved as
single quantum coherences during 7, whereas I 1212 evolved
as a mixture of single and triple quantum coherences, which
have been plotted separately (single and triple). Their sum
(Error corrected) give the intensities of the same experiment
using a pseudopure state (see text). The initial slope of the
sum is close to zero, thus showing that the error-correction
procedure was able to cancel dephasing to first order.
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FIG. 3. Experimentally determined entanglement fidelities
for the TCE experiments after decoding (red) and after de-
coding and error correction (green). The relevant coupling
frequencies are 200.7H z between H and C1, and 103.1Hz be-
tween C1 and C2. The pulse sequences for encoding, decoding
and error correction take about 35ms. In this experiment the
Toffoli gate was realized by a set of pulses. The histogram
represent the fidelities when a single sign flip error has been
induced on H, C1 or C2 clearly exhibiting the improvement
from error correction. The graph shows continuous curves
interpolating the data points. The broken curves were deter-
mined by simulating the pulse sequence using the measured
coupling constants and estimated T’s of 1.1s (C1), 0.6s (C2)
and 3s (H). Differences between experimental and theoretical
curves are attributed to lack of precise knowledge of the er-
ror model. Errors in the data points are approximately 0.05.
Note that since the proton T3 is much longer than that of
the carbons, the long term gain in fidelity is partially due to
recovery of polarization from the proton. The demonstration
of error correction lies in the initial slope. The curves show
that error correction decreases the initial slope by a factor of
~ 10 (by least square fit to the logarithm).



