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Abstract

The current computing model is based on the laws of classical physics.
But the world is not classical, it follows the laws of quantum mechanics.
A quantum computer is a model of computation based on quantum me-
chanics. It has been proved that such a model more powerful than its
classical counterpart, meaning that it can do the same computations as a
classical computer (in approximately the same time) but there exist some
problems for which the quantum computer is much faster. In this paper
I will explain what is quantum information, why a quantum computer
would be useful, what are the problems to build a quantum computer and
how it will work.

1 What is quantum information?

Computer science and quantum mechanics are two of the most fabulous theories
of the 20th century. They merge nicely to form a new field: quantum computa-
tion theory, in which we ask ourselves what a computer could do if it followed
the laws of quantum mechanics.

Before we study the theory of quantum computation, we must define the
formalism in which we are going to work. All we need to represent quantum
states and transformations are vectors and operators in a complex vector space.
Here are some definitions and laws of quantum mechanics.

Note: we will be using the braket notation to represent quantum states. A ket
|1) is noting more than a vector 1/7 in some vector space.

Definition 1 (Hilbert space) An Hilbert space is a complete complex vector
space. If a complex vector space has finite dimension n (the only interesting
case here) then it is complete, hence it is an Hilbert space. We note the Hilbert
space by H™.



The state of a quantum system is represented by a vector in some vector
space H". We will only study the case where the state is pure (as opposed to
mized [1], but we don’t need to worry about those in this paper) so this vector
representation is sufficient.

A classical bit has two possible values, either 0 or 1. Its quantum analogue
will be in a superposition of those two values. The quantum bit is a quantum
system represented by a vector in #2.

Let {|0),|1)} be an orthonormal basis of H2. So any vector |¢) € H? can be
written as a linear combination [¢) = «|0) + §|1), where the complex numbers
a and g are called the amplitudes of the state.

We can now define the basic information unit of quantum information theory.

Definition 2 (Quantum bit) A quantum bit, or qubit is a normalized vector
) = al0) + B1) in H?, ie. [l + 8] = 1.

The normalization condition will be important later on. The basis vectors
represent the classical bits 0 and 1. We can think of a qubit as being in super-
position of those two values, meaning that it’s both 0 and 1 at the same time.
It may be difficult to imagine a qubit, but quantum mechanics allows such a
behavior (we will see later some physical examples of qubits).

We will now explain how to extract information from a qubit. A classical bit
can be measured without trouble, but the qubit is more sensitive: measuring it
may destroy it. We will restrict the measurement to the standard basis, which
means that the only answer we can get is either the classical bit 0 or the classical
bit 1.

Law 1 (Qubit measurement) The measurement of a qubit in the state a|0)+
B|1) yields the classical value 0 with probability ||a||? or the classical value 1
with probability ||3]|>. If the answer 0 is observed, the state collapses (i.e.
transforms) to |0); if the answer is 1, the state becomes |1).

When we measure a qubit, we actually project the vector on one of the
basis vectors chosen randomly depending on the amplitudes. A qubit must be
normalized for the probabilities to sum to one. We could measure in a different
(orthonormal) basis, but the standard {|0),|1)} basis is sufficient for our needs.
We can see that measuring a qubit twice will give the same answer. Indeed,
suppose we measure the state |¢)) = @|0) + 3|1) and that we obtain the answer
0, so the new state is |0). Now if we measure again, the measurement law states
that we will obtain 0 with probability 1.

To do useful computation, we will need more than one qubit. To represent a
group of qubits, we must combine their vector spaces using a mathematical tool
called a tensor product. If we group qubits in H™ and qubits in H"™ then the
resulting space will be H™" = H™ ® H". The definition of a quantum register
follows.



Definition 3 (Quantum register) A quantum register of n qubits is a nor-
malized vector in 2" . It can be expressed as a linear combination of the basis
vectors |0),...,[2" — 1):
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with the restriction that Zflg a2 = 1.

As a notational convenience, we often omit the tensor product symbol. These
notations are all equivalent:

) ® [v) = u) o) = |uo).

To give an example of the tensor product of two qubits, suppose we have two
vectors [¢) = a|0) + B]1), |¢) = ¥|0) + &|1) € H2. The resulting product state
is

[¥¢) = a7|00) + ad|01) + B~(10) + 56]11)

and lies in H*. The standard basis of H* is {|00), |01),[10),|11)}. The mea-
surement law can be generalized to many qubits. In this case, measuring |1¢)
yields two classical bits depending on the probabilities (for example, yields 00
with probability ||ay||?).

To do computation, we will need something to operate on the qubits. What
we need are unitary operations defined as follows.

Definition 4 (Unitary transformation) A unitary transformation is an uni-
tary operator acting on a vector space H™. Unitarity means that the following
properties are satisfied:

) U:lp) —14) 1¥), |¢) € H"

2) (PlY) =(UdlUD)  V|yy,|¢)enn
3) Jp-1 50U =1

where (u|v) is the inner product in H".
Law 2 (Evolution) The evolution of a quantum system |t¢)) must be unitary.

An operator U of H™ can be represented by an n X n matrix M(U). Then
an operator is unitary if its corresponding matrix is unitary, i.e. if M(U)™! =
M(U)t (where M(U)t is the conjugate transpose of M(U)).

One very useful transformation is the one qubit Walsh-Hadamard transform.
We define a transformation by its action on the basis vectors.
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How does H transform a qubit 1)) = a|0) + B|1)? By linearity of H? we

have
Hly)

aH|0) + BH|1)

2(10) + 1)) + (o) - [1))
= 222)0) + 222 (1)

The corresponding matrix is

5014 o= (3)m-(2)

and we can check that it is unitary.

When we group qubits together to form a quantum register, we can calculate
the resulting vector by applying the tensor product on the qubits. But if a
unitary transformation is applied to the state, then it may happen that we
can’t separate the state, i.e. we can’t represent it by a tensor product of qubits.

Definition 5 (Entanglement) We say that a quantum register is entangled
if it can’t be written as a tensor product of its parts.

If a quantum system is entangled, it means that there are correlations be-
tween the subsystems. What we do with one part of the system will influence
the other part. Entanglement is very useful for computation as we will see later.

To give an example of an entangled quantum system, consider the following
state in H*: .

V2

This state is entangled because we cannot find two pure states |1;) and |i5) such
that |¥7) = |¢1) ® |[¢2). Entanglement has strange properties. Suppose that
|¥~) represents the state of two qubits, one of which is on earth and the other
one is on a planet near Alpha Centauri. Since the qubits are entangled, their
individual states cannot be written as vectors in H2 (but this is not important
here).

If we measure our qubit (the one on earth), we will obtain a random answer
(0 or 1), but we will be sure that if someone measure the other qubit, he will
obtain the opposite answer. Although the answer we receive is random, the other
answer is always its opposite. This strange “non-local” property led Einstein to
criticize quantum mechanics in the famous EPR [2] paper.

1) (I01) — [10}).

2 Why would a quantum computer be useful?

2.1 What is a quantum computation?

Now that we have introduced the basic definitions and laws of quantum informa-
tion theory, we can explain how to compute using quantum states and quantum



operations. A quantum computation works as follows; we prepare a quantum
register in a known state, we apply quantum gates on the register, i.e. we apply
unitary operations on some qubits in a precise order, and we measure the final
state of the register (at the end) to learn its content. It is important to note
that a quantum computation is probabilistic in nature, because although the
evolution of the states is deterministic, the measurement step gives probabilistic
answers.

One important result is that every computable function can be implemented
by unitary transformations. This implies that the quantum computer can do
whatever the classical computer does. Also, there is no significant increase in
the time (number of steps) required to compute those functions with a quantum
computer.

To give an example of a quantum computation, suppose we want to imple-
ment a fair coin toss. We will do a one qubit computation. We first prepare our
qubit in the state |0). We then apply the Walsh-Hadamard transform on the
qubit, yielding the superposition

1
V2

We then measure the qubit in the standard basis to obtain the answer 0 with
probability 1/2 or 1 with probability 1/2. The result we obtain is a ¢true random
number. It would be impossible to generate such a number using a classical,
deterministic computer.

H[0) = —=(0) + [1)).

2.2 Some limitations

Quantum mechanics imposes limitations on what we can do with qubits. Two
important results are presented.

Theorem 1 (No accurate measure) Given an arbitrary qubit |¢) = a|0) +
B|1), we can’t learn the amplitudes by measuring the qubit.

This means that if we have a qubit |¢)) in an unknown state, there is no
way we can tell that this qubit is in the state, say 1/2|0) + 1/3/4|1). One thing
we can do is to distinguish between orthogonal states, meaning that if we know
that the qubit is either in the state |¢)) or in the orthogonal state |¢) (such
that (¢|¢)) = 0) then we could apply a measure to tell in which one of those two
states the qubit is.

Theorem 2 (No cloning) Given an arbitrary qubit |[¢) = «|0) + 3|1), there
does not exist an operator A and a state |a) such that A(JY) ® |a)) = |¥) ® [¥).

This implies that we can’t clone (or copy) arbitrary quantum states. We will
omit the proof of those theorems because they are not necessary for this paper.



2.3 Quantum parallelism

We have seen that a qubit can be in a superposition of the classical bits 0
and 1. Now suppose we have a function f:{0,1} — {0,1} and we want to
compute its outputs. Classically, we have to compute f(0) and f(1) separately.
If we use quantum computation, we can do this in one step, by computing
F10) + 1)) = £(|0)) + f(|1)) (f acts on H2, the qubit is not normalized to
simplify the notation). The two values were computed in parallel. This can be
generalized to a superposition of any number of states and gives an exponential
speedup over classical computation. The problem is that we can’t extract both
answers. If we measure the resulting qubit, we will obtain the answer f(|0)) or
7(]1)) at random.

2.4 Quantum interference

What makes quantum computation so powerful is that the different parallel
computations can interfere, leading some answers to become more likely than
others. Suppose we have the unitary transformation U defined by

1 1 1
v-2( 4 1)
If we apply this transformation on |1) and then measure, we obtain 0 or 1 with
equal probability because

L
V2

But if we apply this transformation twice (without measuring in between) we
are sure to obtain 0 if we measure because

UU|1) :U%(lO)-l-ll))
= :(Z5(10) — 1) + Z5([0) + 1))
= 1(10) = [1) + [0) + 1)) = |

Ul1) = —=(10) + (1))

We also have that UU|0) = —|1). Applying U once yields complete random but
applying it twice gives a deterministic answer: the negation of the input (up
to a constant factor, called global phase). This is the work of quantum inter-
ference. In many quantum algorithms, interference plays a crucial role. The
“good” computational paths interfere constructively and the “bad” ones inter-
fere destructively so they will not be encountered. Interference, together with
entanglement and parallelism are the weapons that give the quantum computer
all his power.



2.5 Shor’s algorithm

In 1994, Peter Shor [3] gave a quantum algorithm to factor integers efficiently
(i.e. in polynomial time). This discovery drew a lot of attention to the field of
quantum computation because the factoring problem is at the core of modern
cryptography. Indeed, there is no known way to factor large integers efficiently
on a classical computer. In 1994, 1600 computers working together over a period
of 8 months, succeeded to factor a 129-digit number. Later, a 130-digit number
was factorized in a shorter time, but still required an incredible amount of work.

At this rate, factoring a 2000-digit number would be unimaginable. As Vazi-
rani puts it [4], “Even if you imagine that every particle in the Universe is a
[classical] computer and was computing at full speed for the entire life of the Uni-
verse, that would be insufficient to factor that number.” Many cryptographic
systems base their security on the assumption that the factoring problem is dif-
ficult. But Shor’s algorithm could break such systems very effectively. This was
the first practical problem which hinted the superiority of quantum computer.

2.6 Grover’s algorithm

Suppose we have a function f:{0,1}" — {0,1} such that 3,f(z) = 1 and
Vy£of(y) = 0. If we want to find the 2 such that f(z) =1, classically we
must choose inputs and compute the function until we find z. In complexity
theory, we say that this takes a time in ©(n)!. Grover [5] developed a quantum
algorithm that solve this problem in time ©(y/n). This is not an exponential
speedup, but the gain is substantial considering that this algorithm has many
applications. Indeed, we can use this algorithm to search for an item in an un-
sorted database or to find collisions of a function. Many other algorithms that
use Grover’s as a subroutine were thereafter created.

2.7 Quantum teleportation

Quantum mechanics allows more than just computing functions. In 1993, Ben-
nett et al. [6] discovered what is now called quantum teleportation. They proved
that Alice can “teleport” an unknown qubit to Bob by sending only two clas-
sical bits, provided they share entanglement prior to the experiment. Recall
that Alice can’t just obtain the amplitude and send them to Bob. Teleportation
works as follows. First, Alice and Bob have to share parts of an entangled pair
(like |[¥7)). Then, all Alice has to do is to entangle her part of the entangled
pair with the qubit she wants to teleport (say |¢)) and measure both particles
she has in hands. She then communicates her two classical measurement results
to Bob, who can finally transform his part into the original state |¢). Telepor-

L An algorithm is in ©(n) if its number of steps is bounded between cin and can (for some
constants ¢1,c2) when n — oo.



tation was experimentally implemented in 1997 [7]. Brassard et al. [8] gave a
simple quantum circuit that implements teleportation.

2.8 Quantum cryptography

Shor’s algorithm poses a threat to the security of some cryptographic systems.
The venue of a quantum computer would put a lot of secret data in danger.
Ironically, quantum mechanics allows to communicate with unconditional se-
curity. The scheme of quantum cryptography was invented by Bennett and
Brassard [9] who built on the work of Wiesner[10]. The technique is used to
exchange a secret key that can be used for cryptographic purposes. The idea is
to use non-orthogonal quantum states to encode bits. If a spy tries to eavesdrop
on a data exchange, he will disturb the quantum states, revealing his presence.
Many prototypes have been built and are working properly (see [11]).

3 Can we build a quantum computer?

3.1 Qubit?

To perform quantum computation we need qubits. But where do we find qubits?
Fortunately, many elements in nature have the behavior required to act as
qubits. For example, a qubit could be encoded in the polarization of a pho-
ton, where any two perpendicular directions could serve as a basis for the qubit
state. Another example is the spin of an electron: the states spin-up and spin-
down may represent |0) and |1) respectively. Quantum mechanics says that the
spin of an electron can be in superposition of being up and down, so this would
make a good qubit.

3.2 ZErrors

Until now, we supposed that all the preparations, transformations and mea-
surements of qubits could be done reliably (i.e. without errors). Unfortunately,
a quantum computation is doomed to introduce errors. Typically, a quantum
system can’t be totally isolated from its environment. This (slight) interaction
causes the qubits to entangle themselves with the environment. This correla-
tion damages the qubits, we say that they decohere. To this we must add the
technical problem of applying transformation which form a continuum. If we
transform the qubit into (a+€;1)|0) + (8+€2)|1) instead of a|0) + 3|1), the small
errors build up into larger ones and this can ruin the computation.

3.3 Error correction

In classical computers, we have a way to deal with errors. With error correc-
tion techniques, we can detect and correct errors. This is done by introducing



redundancy in the data, which is easy because we can read and copy bits. But
qubits can be neither read or copied. Fortunately, error correcting codes were
developed for qubits [12, 13]. The idea is to encode one qubit with many qubits,
introducing the redundancy within the entanglement of the register. One could
say that entangled information is hidden from the environment. Destroying one
qubit is not enough to corrupt the state of the entire register. Recent results
showed that if the error probability per step of computation is lower than a
certain threshold, we can store and compute with quantum information for an
unlimited time. See Preskill [14] for a nice review.

4 How will a quantum computer work?

Just a few years ago, many researchers believed that quantum computation was
science-fiction. Recent results give hope that one day, quantum computers will
be part of our lives. There are more and more laboratory experiments that
try to bring the quantum computer to life. We will present two of the more
promising models.

4.1 Ion trap

In 1995, Cirac and Zoller [15] proposed a scheme to implement a quantum com-
puter using a linear array of trapped ions (the quantum register) and laser pulses
(to apply operations). Each ion, maintained in place by an electromagnetic field,
encodes a qubit. Its ground and excited states are used as the basis {|0}, |1)}.
Laser pulses are applied to qubits to change their states, allowing the register
to be placed in arbitrary superpositions.

4.2 NMR

The apparatus used in a NMR quantum computer is a liquid containing a large
number of molecules of some type. The spin state of the nuclei of each atom
in the molecule encodes a qubit. Each molecule is an independent quantum
computer. We operate on qubits using nuclear magnetic resonance (NMR)
techniques. This scheme was proposed by Chuang et al [16] in 1996 and is
very promising considering the stability of the states. They recently succeed to
implement Grover’s algorithm on a four-state quantum system.
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