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Abstract

Men always had the desire to communicate in secrecy. With the ad-
vent of computers, this desire became a necessity (for Internet communi-
cations, bank transactions, etc.) Over time, methods have been developed
to achieve this goal (many of which were poor attempts), and some were
even unconditionally secure (i.e. secure against a spy who has unlim-
ited time and computer power), but they required a private key exchange
before the actual communication could take place. It has been recently
discovered that there is a way, using properties of quantum mechanics,
for two strangers to communicate in perfect secrecy. This method led to
the study of quantum cryptography. In this paper, we will first present
some classical cryptographic schemes (one-time pad, DES, RSA) and their
strengths and weaknesses. Then, we will study the aforementioned quan-
tum protocol.

1 Introduction

The study of systems to encode messages dates back to 1900 BC. Back then,
it was considered an art rather than a science, due to the lack of mathematical
knowledge to study them more accurately. One of the most well-known system
of the time was the cypher where a message is encoded by shifting (modulo 26)
every letters by a fixed number called the key (Caesar used this system with a
key value of 3.) For example, the message “julius” would be encoded as “rctq-
ca” with a key of 8 (because j+8 = r, u+8 = ¢, etc.) To decode an encryption,
simply subtract 8 from each letter. But such a code can easily be broken by
systematically trying every 26 keys on an encrypted message and seeing which
one makes sense. In another system called the substitution cypher, the key
is a table describing a permutation of the alphabet letters (for example, a—k,
b—m, c—y, etc.) The text would then be encrypted by replacing each letter
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by the corresponding permuted letter (replace ’a’ with 'k’ ’b’ with 'm’, etc.)
The substitution cypher is more difficult to break than the shift cypher, but
its security is still weak. If we know that the message is written in English,
statistical analysis tells us that some letters are more frequent than others. So,
by comparing frequencies of the letters in the encrypted text, we could guess
relatively well which letter is substituted for which one. This may be a good
puzzle for a human, but it’s a piece of cake for a computer.

In World War I, a more mathematical study of cryptosystems turned the
field into a science, yielding more secure systems. In what we now call classi-
cal cryptography, the participants (that we call Alice and Bob) share a secret
key k. When Alice wants to send a secret message m to Bob, she uses an en-
coding function E and the key to produce an encrypted cyphertext ¢ = Ej,(m).
The cyphertext is sent on a public (insecure) channel. Nobody intercepting
the cyphertext should be able to understand its meaning. When Bob receives
the cyphertext, he uses his decoding function D along with the key to recover
the message m = Dg(c). Some classical systems have perfect secrecy. In this
context, the users must exchange a key, in advance, on a secure channel. This
restrains the flexibility of such systems, particularly in today’s world where a
lot of private communications must take place between strangers.

Fortunately, the invention of public key cryptosystems changed the face of
cryptography. In such a scheme, two different keys are used: one for the encod-
ing and one for the decoding. Everybody have access to the encoding key of
a particular user, so anybody can send messages to that person. On the other
hand, the decoding key is known only by that person, ensuring the privacy of
the messages he receives. Public key cryptosystems solve the key distribution
problem, but such systems are by definition only computationally secure. This
means that an eavesdropper intercepting the cyphertext who has enough time
and computer power could retrieve the message.

If our goal is to communicate with unconditional security, without having
to exchange keys in advance, then there is a new hope: quantum cryptography.
We will see a protocol which uses properties of photons to exchange a key over
a public channel, that can detect the presence of an eavesdropper if any. The
key can then be used with an absolutely secure classical cryptosystem.

2 Classical cryptosystems

Many cryptosystems were developed over time. We present in this section three
systems which played an important role in cryptography.



2.1 One-time pad

The one-time pad cryptosystem was created by Gilbert Vernam in 1917. It is
very simple and yet, very effective. Indeed, this system has perfect secrecy,
meaning that no matter the time and computer power available, an adversary
could not break it (as long as the key remains secret). The system works as
follows:

1. Prior to the communication, Alice and Bob secretly exchange a random
key k = k1 ...k, of n bits.

2. When Alice wants to send the message m = my ... m, to Bob, she encodes
it by computing the bitwise exclusive-or (XOR) between the message and
the key producing the cyphertext ¢ = (m1 ® k1) ... (m, ® k). Recall that
060=191=0and01=140=1.

3. Upon reception, Bob decodes the cyphertext by applying the inverse op-
eration m = (c1 ® k1) ... (cn ® kp).

For example, if the participants share the secret key 011100 and that Alice
wants to send the message m = 101110 to Bob, she encodes it with the key
obtaining

c=m@k =101110® 011100 = 110010

and sends the cyphertext ¢ = 110010 over the public channel. To recover the
message, Bob XORs the key to the cyphertext yielding

m=c®k =110010® 011100 = 101110

Despite its security, the one-time pad is very impractical. For every message
encoded with the system, the participants need to exchange a secret key that
has at least the same length. Also, one must not use the same key twice (hence
the name of the system). If you use the same key % to encode the two messages
m and m/', then if a eavesdropper intercepts the two cyphertexts ¢ and ¢/, he
only has to compute

cdd=mokeom ek=mom'ekdk=maem’

to obtain the XOR of both messages, which is a lot of information! The one-time
pad is used mainly for highly confidential communications (in the government
or in the military).

Many other systems were developed to allow long messages to be encoded
with short keys that can be reused. One of the must popular is the DES.

2.2 DES

The Data Encryption Standard (DES) is currently the most used cryptosystem
in the world. We find it in bank transactions, Unix password systems and many



other places. It became a standard on January 15th, 1977. With DES, Alice
and Bob share a 56-bit secret key that they use to encode and decode 64-bit
pieces of messages. The encoding and decoding functions are too complex to
present here, let’s just say that the 64-bit message passes through a series of
permutations and transformations depending on the key value [1].

Because the key length (56) is smaller than the message being encoded (64),
information theory [2] tells us that the system can’t be unconditionally secure.
DES is rather old and nowadays, many hardware chips are designed to break
it. With a reasonable effort, a computer network can break a DES cyphertext
within a day of work [3]. This is the price to pay to use small keys. In fact, the
only absolutely secure system is the one-time pad (or variations). But in both
cases, the users must agree in advance on a secret key.

2.3 Problem of key exchange and RSA

The systems presented until now share a major disadvantage: for two people to
communicate secretly, they must exchange in advance a secret key in person or
over a secure channel. This is known as the key distribution problem. This im-
plies that two strangers can’t communicate with those systems (assuming that
they don’t have a secure channel; if they did they would not need encryption in
the first place.)

In 1976, Whitfield Diffie and Martin Hellman [4] revolutionized the crypto-
graphical world by introducing the theoretical notion of public key cryptography.
In such a system, every person would have a public encoding key and a secret
decoding key, such that encryption and decryption using these keys would be
inverse functions. The encoding key would be published in some kind of index
(similar to a phone book) and the decoding key would be kept secret by every
user. If Alice wants to send a secret message to Bob (that she doesn’t necessary
know), she would look up in the index to find Bob’s encoding key, she would
then encrypt her message with this key and send it through an insecure channel.
Bob, receiving the message, would then decode it using his secret key. In short,
anyone can write a secret message to Bob (using his public key) but only Bob
can decode them with his private key (even the sender can’t decode his own
message once it has been encrypted).

The first realization of a public key cryptosystem is due to Ron Rivest, Adi
Shamir and Leonard Adleman [5] who invented the popular RSA cryptosystem
in 1977. The system is now widely spread, particularly over the Internet. The
security of RSA is based on the factoring problem, i.e. the difficulty, given a
large number n, to find its prime factors. If Bob wants to have a public key,
he secretly and randomly chooses two large prime numbers p and ¢ (about the
same length) that he multiplies to get n = pg. He then randomly chooses an e
such that e and (p—1)(¢—1) are relatively prime and publishes it, along with n,
in the index book (those two numbers constitute the public key). His decoding



private key will be d = e~! mod ((p — 1)(g — 1)), easily computable with the
Euclidean algorithm. If Alice wants to send Bob the message m (0 < m < n,
number converted from a binary string), she computes the encoding function
¢ = mf mod n and transmits ¢ to Bob. To recover the message, Bob applies
the decoding function m = ¢? mod n. We can check that both functions are
inverse operations. If m and n are relatively prime, it’s easy to see that, since
ed =1(mod (p—1)(¢—1)) and that (p—1)(¢ — 1) = ¢(n) (the Euler function),

¢ = med = mPP- DD+ = g ke(n) = 1y (mod n)

(because m?™ = 1 (mod n) when m € Z¥). With more number theory, we can
generalize the verification to all m. All the operations required in the system
can be efficiently calculated, so the encryption and decryption are fast (which
is a desirable property in a cryptosystem).

Here is a small example. If the random choices of Bob are p = 173 and
g = 149, he obtainsn = pg = 25777 and (p—1)(¢g—1) = 172 x 148 = 25456.
Bob randomly chooses e = 3417, checks that ged(n,e) = ged(25777,3417) = 1
and computes d = e~! (mod 25456) = 19593. He publicly announces the
numbers e = 3417 and n = 25777. Now, if Alice wants to send him the
message m = 9273, she computes ¢ = 9273%417 mod 25777 = 6878 and
sends it through the public channel. After reception, Bob recovers the text
m = 687819593 mod 25777.

The two prime numbers p and g are never used in the communication. In
fact, they should be discarded after Bob computes n and (p—1)(¢—1). If a spy
could learn those numbers, he could easily break the system by computing d the
same way Bob did. If an efficient algorithm to factor large numbers was known,
RSA would be useless because anybody could factor n into p and ¢. This task is
believed to be difficult, since the best algorithm known to factor large numbers
takes superpolynomial time. The longer n is, the more secure the system is.
The RSA company constantly challenges people to factor some numbers that
they provide [3]. The last reported factored number had 140 digits. The task re-
quired 8.9 CPU years distributed on many computers (one month in real time).
They estimate that a 1024-bit number would be 40 million times longer to factor.

It’s interesting to know that there exists an efficient algorithm for factoring.

Only, it requires a quantum computer [8, 9], a computer model based on quan-
tum mechanics. For more information on classical cryptography, consult [7, 6].

3 The quantum protocol

We will now see how we can use quantum mechanics to develop a scheme that
allows Alice and Bob to exchange a key right under the nose of an adversary.



This scheme was invented by Charles Bennett and Gilles Brassard [10, 11] in
1982. The protocol uses photons, so let’s first study some of their properties.

3.1 Properties of photon polarization

Without getting lost in details, we know that photons have a polarization angle,
corresponding to the angle of the plane in which they oscillate on their propa-
gation axis. The polarization angle is a number 6 such that 0° < 8 < 180° since
there are no differences between a photon polarized at # and another at 8+ 180°.

Photons emerging from a light source often have an unknown polarization
angle. To induce a particular polarization to a photon, we use a light filter that
has the property of letting only photons polarized in this angle pass through. If
we use a filter that lets photons polarized at degree 6 pass through (we will call
it a f-filter), any photon polarized at this angle will pass through undisturbed,
and photons polarized at any other angle will either be stopped by the filter
or will emerge with a polarization 6. The two possibilities are dictated by the
laws of probability. Quantum mechanics tells us that a photon polarized at
angle ¢ passing through a f-filter has probability cos?(¢ — 6) of emerging with
polarization # and a probability sin®(¢ — ) of being stopped by the filter.

Physical explanations of this phenomenon are beyond the scope of this paper
(if you are interested, see [12].) All we need to know is that the event is a real
probabilistic choice, i.e. it’s a true random event (as opposed to a technologi-
cally unpredictable one.) The choice is made by nature, at the moment where
the photon hits the filter, depending only on the difference of the angles.

We will now study some specific cases. Suppose we are only interested in
photons polarized at 0° (represented by <), 45° (/*), 90° (1) and 135° (N).
Let’s see the behavior of these photons when they go through 0° and 45°-filters.
The table 1 gives the probability (given by the above law) for each photon to
pass through the filters undisturbed, depending on the type of the filter.

0°  45°
o | 1 12
T 0 172
2121
N|1/2 0

Table 1: Probability that a photon passes through a @-filter

Suppose we want to use the polarization angle to encode bits to be trans-
mitted. We need to choose a basis in which we can distinguish the two values (0
and 1) without ambiguity. One choice is the rectilinear basis (photons polarized
at angle 0° or 90°). We can arbitrarily decide that the bit 0 is encoded by a



horizontally polarized photon (++) and that the bit 1 is encoded with a vertically
one (). Here is a simple protocol allowing Alice and Bob to communicate with
photons prepared at angle 0° or 90°. If Alice wants to send a 0 to Bob, she
prepares a < and sends if through optical fiber. Bob, at the other end, mea-
sures it with a 0°-filter. If the photon emerges, then he knows that the bit was 0
(probability = 1). If the photon is stopped, then he concludes that the bit was 1.

If instead Alice and Bob only had at their disposal photons polarized in the
diagonal basis (45° or 135°), they could use this alternate protocol to communi-
cate. They agree that ,* means 0 and that N\, means 1. For Alice to send, for
example, a 1 to Bob, she prepares N, and sends it through the channel. Bob
then uses a 45°-filter to recover the bit (0 if it passes, 1 if it’s stopped).

What happens if we encode a bit in one basis and measure in the other one?
For example, suppose Alice sends § (meaning 1) to Bob who measures in the
diagonal basis (using a 45°-filter). Table 1 tells us that the photon will emerge
(interpreted as 0) with probability 1/2 and will be stopped (interpreted as 1)
also with probability 1/2 . This means that the value obtained by Bob will be a
random bit. Another way of saying it is that if Alice sends a photon in one basis
and Bob measures in the other, he can gain no information about the original
bit. This fact is at the core of the quantum key distribution described next.

3.2 Quantum Key Distribution

We are now ready to see how Alice and Bob can obtain a common and random
key using quantum mechanics. The protocol is a key distribution, i.e. it allows
Alice and Bob to agree on a secret bit string to be used as a key in a cryptosys-
tem.

The protocol starts with Alice who sends a sequence of photons randomly
polarized («, §, /*, ) (step 1). Bob receives the photons and for each one, he
independently chooses to measure them in the rectilinear (4) or the diagonal (x)
basis (2) and he notes down the measuring results (3). Note that some photons
may not be received due to imperfection of the transmitting and measuring
devices (the ? in the table). Bob then sends, over the classical channel, the
basis in which he measured each photon he received (4). Alice transmits back
the positions where her encoding basis matches Bob’s measuring one (5). Bob
only keeps those results (6) and interprets them as bits (7). Alice also interprets
those photons as bits, yielding a common and random bit sequence. Here is an
example of the protocol.
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6) v N T © s
7) 0 1 1 0 0

After the protocol, Alice and Bob share a random key (here 01100) which
they can use to communicate secretly over a classical channel. If they use the
one-time pad cryptosystem, their communication will be unconditionally secure.
Note that the protocol could not be used to directly send a message because
nearly half the bits are (randomly) discarded in the process.

3.3 The protocol vs Eve

The protocol works fine when Alice and Bob communicate over secure classical
and quantum lines. But if we want to use it as a key distribution, we must
study what happens when an eavesdropper (called Eve) is watching and possi-
bly playing a role in the communication.

If we want the protocol to be really secure, we must allow Eve to do whatever
she wants. We suppose that Eve can spy on both the classical and the quantum
channels. When the photons pass right by her, Eve is free to measure them in
any basis she likes, to intercept the photon and send another one. We will only
consider the case where she measures the passing photons in either the rectilinear
or the diagonal basis (the same as Bob’s) and retransmits the measured photon
(the protocol has been proven secure against any attack; we use this example for
simplicity.) The more Eve measures (spies), the more she will cause noticeable
disturbances. Indeed, if Alice sends a photon polarized in one basis and Bob
measures in that same basis, they will keep the bit at this position. If Eve
measures in between with the same basis, she will not change the polarization
of the photon and she too will know the corresponding bit (i.e. she will know
one bit of the key.) But if, instead, Eve had measures in the other basis, the
photon will be repolarized in this basis and with probability 1/2, Bob will obtain
a different bit than Alice. For example, if Alice sends < (meaning 0) and Eve
measures with a 45°-filter getting *, and if Bob measures with a 0°-filter, with
probability 1/2 he will get J (interpreted as 1). Alice and Bob would agree on
this bit, even though it’s different. We are only interested in the effect of Eve’s
measurement when Alice and Bob use the same basis because if they don’t, the
corresponding bits will be discarded. The next table gives the probability that
Alice and Bob get the same bit depending on the basis they and Eve used.



Alice & Bob Eve | Probability

+ + 1
+ X 1/2
X + 1/2
X X 1

For every bit that Alice and Bob keep and that Eve measured in between,
there is a probability of 1/4 that they will be different. So every time Eve
measures a photon that they will keep, one time out of four, she will introduce
an error in their key. To ensure that their communication was secret, Alice and
Bob will compare some information about their respective key strings. If Eve
spied too many times, the odds that she will be discovered will be high. One
way to test for eavesdropping is to compare the parity of random subsets of
the key chain. For example, suppose Alice chain is 01001011 and that Bob’s
is 01101001 (the two errors were caused by Eve’s measurement.) Alice would
choose a random subset of positions (1,3,5,8) and publicly tell them to Bob
along with the parity of the bits at those positions, whichis 0 (0 0&® 1@ 1).
Bob would reply that the parity of his bits is 1 (0® 1@ 1@ 1). Because they
differ, they would conclude that there was a spy on the line. They would then
stop the communication and restart the protocol over. It can be shown that
this parity comparison can detect, with probability 1/2, that Alice and Bob
have a difference in their key, regardless of the number and positions of errors.
They only have to repeat this process twenty times to reduce the probability
that Eve spied unnoticed to less than one in a million. Note that the protocol
is probabilistically secure, meaning that with a high probability (as close to 1
as we want), the protocol is unconditionally secure.

4 Experimental realizations

The quantum key distribution is a nice result, but is it technologically feasi-
ble? For a long time, it was considered science-fiction but in 1989, at the IBM
Thomas J. Watson Research Center, the first working prototype was built by
Charles Bennett, Gilles Brassard and some of their students [13]. It allowed
Alice and Bob (two computers) to communicate with perfect secrecy at a rate
of 10 bits/second over a distance of 30cm! A small step for Alice and Bob but a
large step for quantum cryptography. The protocol had to be slightly modified
to work in practice. For instance, it’s difficult to send only one photon at a
time, some dim flashes of light are sent instead. This complicates the proof of
security. Also, some errors occur in the key even when Eve is not present. So
the test for eavesdropping must be modified. A technique known as privacy
amplification is used, in which Alice and Bob distill (through public discussion)
from their partly secret key a smaller but highly secure key. The probability
that Eve know even one bit of this new key will be very low.

Later, some other implementations were realized at a larger scale. At the
Los Alamos National Laboratory, they realized an experiment where a quantum



key distribution takes place over 48 km of optic fiber. They even succeed in
transmitting the photons in free-space over 1 km. A group at the University of
Geneva established the protocol under the lake of Geneva on a distance of 23
km. This means that quantum cryptography will be part of our lives in a near
future.
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