Objective

The objective of project two is to design a voltage source using the HC11. This project will expand on the knowledge of on-time and off-time learned in previous experiments. The project will be designed to take in an input number (decimal) between 0 and 50 and output a signal connected to a simple RC filter. The main task is to design the system so that the average output voltage (after filtering) is equal to 1/10 the input number. In addition to this task, the program should be written to display the user-entered voltage on a seven-segment display.

Theory

In theory, the program should monitor the keyboard entries to the terminal in order to change the desired voltage. After the keyboard entry is made, the seven-segment display, along with the voltage through the RC filter, should change according to the input.

The voltage through the RC filter is changed by using an OC2 interrupt to adjust the on-time and off-time. As learned in the previous experiment, by adjusting the amount of time that a signal is sent through Port D, the voltage that is seen across Port D is changed corresponding to the input voltage. The on-time + off-time is kept constant, while the on-time is changed to generate the required average voltage.

There are many design requirements that must be taken into consideration before writing the program. If the input is less than two digits, the program should assume that the first digit is zero. If the input has more than two digits, the program should use only the last two digits. The program should discard illegal inputs and send a beep to the terminal in order to inform the user of the illegal entry.

There are also many design requirements concerning the on-time and off-time to take into consideration. The on-time and off-time should be selected so that the on-time + off-time is constant. The product of the values of the resistor and the capacitor should be at least tem times the on-time + off-time.

Results and Conclusions

The simple voltage source was successfully implemented. The design allowed a user to enter a voltage between 0 and 50. After the user pressed the enter key, the seven-segment display showed the new voltage while the voltage through the RC circuit was changed to match the new voltage.

This project helped to understand OC2 interrupts and what they can be used for. Not only did the project help to understand interrupts, the project also helped to understand what an HC11 is capable of doing.

Pseudo Code

OUT1BYT
EQU
$FFBB

OUTA

EQU
$FFB8

OUTSTRG
EQU
$FFC7

BIT6

EQU
%01000000

BIT3

EQU
%00001000

BIT2

EQU
%00000100

TOC2

EQU
$1018

TFLG1

EQU
$1023

TMSK1

EQU
$1022

PORTD

EQU
$1008

DDRD

EQU
$1009

INCHAR

EQU
$FFCD

OUTCRLF
EQU
$FFC4

OUTLHLF
EQU
$FFB2

OUTRHLF
EQU
$FFB5

ENTER

EQU
$0D

SPACE

EQU
$20

BEEP

EQU
$07

BACK

EQU
$08

ESCAPE

EQU
#27

ORG
$3000

Originate data at $3000

FLAG

RMB
1

Reserve 1 byte of for FLAG

OFFTIME
RMB
2

ONTIME

RMB
2

INDEX

RMB
1

INDEX1

RMB
1

TEMP

RMB
2

INPUT

RMB
1

LEDNUM
RMB
1

NUMB1

RMB
1

ONTABLE
FDB
$0074,$0190,$0320,$04B0,$0640,$07D0,$0960

FDB
$0AF0,$0C80,$0E10,$0FA0,$1130,$12C0,$1450

FDB
$15E0,$1770,$1900,$1A90,$1C20,$1DB0,$1F40

FDB
$20D0,$2260,$23F0,$2580,$2710,$28A0,$2A30

FDB
$2BC0,$2D50,$2EE0,$3070,$3200,$3390,$3520

FDB
$36B0,$3840,$39D0,$3B60,$3CF0,$3E80,$4010

FDB
$41A0,$4330,$44C0,$4650,$47E0,$4970,$4B00

FDB
$4C90,$4FAC

OFFTBLE
FDB
$4FAC,$4E70,$4CE0,$4B50,$49C0,$4830,$46A0

FDB
$4510,$4380,$41F0,$3060,$3ED0,$3E40,$3BB0

FDB
$3A30,$3890,$3700,$3570,$33E0,$3350,$20C0

FDB
$2F30,$2DA0,$2C10,$2A80,$28F0,$2760,$25D0

FDB
$2440,$22B0,$2120,$1F90,$1E00,$1C70,$1AE0

FDB
$1950,$17C0,$1630,$14A0,$13A0,$1180,$0FF0

FDB
$0E60,$0CD0,$0B40,$09B0,$0820,$0590,$0500

FDB
$0370,$0074

ASCII

FCB
$30,$31,$32,$33,$34,$35,$36

FCB
$37,$38,$39

FCB
$04

INPTBLE
FCB
$00,$01,$02,$03,$04,$05,$06

FCB
$07,$08,$09,$10,$11,$12,$13

FCB
$14,$15,$16,$17,$18,$19,$20

FCB
$21,$22,$23,$24,$25,$26,$27

FCB
$28,$29,$30,$31,$32,$33,$34

FCB
$35,$36,$37,$38,$39,$40,$41

FCB
$42,$43,$44,$45,$46,$47,$48

FCB
$49,$50

ON

FCC
'Ontime = '

FCB
$04

OFF

FCC
'Offtime = '

FCB
$04

NAME

FCC
'Edward Rivera'

FCB
$04

PROMPT
FCC
'Please enter desired value of voltage'

FCB
$04

ERROR

FCC
'Entered voltage too high (> 50), try again'

FCB
$04

VOLT

FCC
'Desired voltage is: '

FCB
$04

ORG
$00DC

JMP
OC2ISR

ORG
$2100

Beginning of Main at $2100

LDX
#NAME

Load X with my name

JSR
OUTSTRG
Print my name to the screen

LDD
#$74

Initializes output voltage to zero

STD
ONTIME

Stores value in ACCD to ONTIME

LDD
#$4FAC

Initializes value for OFFTIME

STD
OFFTIME
Stores value in ACCD to OFFTIME

CLR
FLAG

Clears flag for interrupts

LDAB
#$3F

STAB
DDRD

Sets up output bits of PORTD

SEI

Set interrupt flag

LDAB
#BIT6

Load ACCB with the contents of BIT6

STAB
TMSK1

Store ACCB to TMSK1

CLI

Clear interrupt flag

LOOP

CLR
INPUT

Clear the label INPUT

JSR
OUTCRLF

LDX
#ON

Load X with the address of ON

JSR
OUTSTRG
Print the contents of ON

LDX
#ONTIME
Load X with the address of ONTIME

JSR
OUT1BYT
Print 1st half of ONTIME value

JSR
OUT1BYT
Print 2nd half of ONTIME value

LDX
#OFF

Load X with the address of OFF

JSR
OUTSTRG
Print the contents of OFF

LDX
#OFFTIME
Load X with the address of OFFTIME

JSR
OUT1BYT
Print 1st half of OFFTIME value

JSR
OUT1BYT
Print 2nd half of OFFTIME value

JSR
OUTCRLF

LDX
#PROMPT
Load X with the address of PROMPT

JSR
OUTSTRG
Print prompt to user to enter number

JSR
OUTCRLF

USERINP
CL?ÁY?
?¿

?

?
?

????

?
?
?
?
?

?

?

?

]

S
S

S

S

S

S

U

?

?

?

?

?
T
U

?
¶
?

?

?

?

?

?

?

?

?

?

?

?

?

?

?
$
?
?
?
p
?
?

S

?

?

?

?

?

?

A
#ENTER

Compares keystroke to ENTER key

BEQ
STORE

Branches to STORE if key is ENTER key

CMPA
#SPACE

Compares keystroke to SPACE key

BEQ
STORE

Branches to STORE is key is SPACE key

LDX
#ASCII

Load X with the address of ASCII

GETNUM
CMPA
$00,X

Compares keystroke to X+0

BEQ
FOUNDIT
Branch to FOUNDIT if keystroke is found in ASCII table

INX

Increment X

INC
INDEX

Increment INDEX

LDAB
$00,X

Load ACCB with X+0

CMPB
#$04

Compare ACCB with terminating character

BEQ
UNKNOWN
Branch to UNKNOWN if ACCB has term. char.

BRA
GETNUM
Branch always to GETNUM

DONE1

SWI

If ESCAPE key is hit, quit program

FOUNDIT
LDY
#TEMP

Load Y with the address of TEMP

LDAB
$01,Y

Load ACCB with contents of Y+1

STAB
$00,Y

Store contents of ACCB to Y+0

INY

Increment Y

SUBA
#$30

Change value in ACCA from ASCII to digit needed

STAA
$00,Y

Store contents of ACCB to Y+0

BRA
GETCHAR
Branch always to GETCHAR

UNKNOWN
LDAA
#BACK

Load ACCA with value of BACK

JSR
OUTA

Print backspace on screen

LDAA
#SPACE

Load ACCA with the value of SPACE

JSR
OUTA

Print space on screen

LDAA
#BACK

Load ACCA with value of BACK

JSR
OUTA

Print backspace on screen

LDAA
#BEEP

Load ACCA with the value of BEEP

JSR
OUTA

Beep to user

BRA
GETCHAR
Branch always to GETCHAR

STORE

LDX
#TEMP

Load X with the address of TEMP

LDY
#INPUT

Load Y with the address of INPUT

LDAA
$00,X

Load ACCA with the contents of X+0

STAA
NUMB1

Store first digit of number into NUMB1

LSLA

Left shift the contents of ACCA

LSLA

Left shift the contents of ACCA

LSLA

Left shift the contents of ACCA

LSLA

Left shift the contents of ACCA

ADDA
$01,X

Add ACCA with the contents of X+1

STAA
$00,Y

Store contents of ACCA to Y+1

LDAA
INPUT

Load ACCA with the contents of INPUT

CMPA
#$50

Compare ACCA to the value 50

BGT
RESTART
Branch to RESTART if INPUT > 50

JSR
OUTCRLF

LDX
#VOLT

Load X with the address of VOLT

JSR
OUTSTRG
Print the string contents of VOLT

LDAA
INPUT

Load ACCA with the contents of INPUT

JSR
OUTLHLF
Print the left nibble of INPUT

LDAA
#'.'

JSR
OUTA

Print a decimal on the screen

LDAA
INPUT

Load ACCA with the contents of INPUT

JSR
OUTRHLF
Print the right nibble of INPUT

JSR
LED

Jump to the subroutine LED

CLRA

Clear ACCA

LDX
#INPTBLE
Load X with the address of INPTBLE

LOOPS

LDAB
$00,X

Load ACCB with the contents of X+0

CMPB
INPUT

Compare ACCB with the content of INPUT

BEQ
CONTINUE
Branch to CONTINUE if ACCB contains the value in INPUT

INX

Increment X

INCA

Increment ACCA

CMPA
#51

Compare ACCA with the value 51

BEQ
RESTART
Branch to RESTART if ACCA contains the value 51

BRA
LOOPS

Branch always to LOOPS

CONTINUE
STAA
INPUT

Store the contents of ACCA in INPUT

LDAB
INPUT

Load ACCB with the contents of INPUT

LDX
#ONTABLE
Load X with the address of ONTABLE

LDY
#OFFTBLE
Load Y with the address of OFFTBLE

ABX

Add B to X

ABX

Add B to X

ABY

Add B to Y

ABY

Add B to Y

LDD
$00,X

Load ACCD with the contents of X+0

STD
ONTIME

Store ACCD to ONTIME

LDD
$00,Y

Load ACCD with the contents of Y+0

STD
OFFTIME
Store ACCD to OFFTIME

JMP
LOOP

Jump to LOOP

RESTART
LDAA
#BEEP

Load ACCA with the value of BEEP

JSR
OUTA

Produces a beep

JSR
OUTCRLF

LDX
#ERROR

Load X with the address of ERROR

JSR
OUTSTRG
Print the string contents of ERROR

JSR
OUTCRLF

JMP
USERINP
Jumps to USERINP

LED

LDAB
NUMB1

Load ACCB with the contents of NUMB1

LSLB

Logical left shift ACCB

LSLB

Logical left shift ACCB

LSLB

Logical left shift ACCB

STAB
LEDNUM
Store the contents of ACCB to LEDNUM

RTS

OC2ISR

LDAA
TFLG1

Load ACCA with the contents of TTFLG1

ANDA
#BIT6

AND ACCA with BIT6

BEQ
ISRDONE
Check for false interrupts

LDAB
FLAG

Load ACCB with the contents of FLAG

ANDB
#BIT2

AND ACCB with BIT2

EORB
LEDNUM
Exclusive OR ACCB with LEDNUM

STAB
PORTD

Store ACCB to PORTD

TST
FLAG

Test if FLAG is zero

BEQ
WENTLOW
Branch to WENTLOW if FLAG is zero

LDD
ONTIME
Load ACCD with the contents of ONTIME

ADDD
$1018

Reschedule the next interrupt

STD
$1018

BRA
TOGGLE

WENTLOW
LDD
OFFTIME
Load ACCD with the contents of OFFTIME

ADDD
$1018

Reschedule the next interrupt

STD
$1018

TOGGLE
LDAB
FLAG

Load ACCB with the contents of FLAG

EORB
#BIT2

Exclusive OR ACCB with BIT2

STAB
FLAG

Store ACCB to FLAG

LDAA
#BIT6

Load ACCA with BIT6

STAA
TFLG1

Reset TFLG1

ISRDONE
RTI
