INTRODUCTION:

In this project we were tasked with designing a data processing unit, and control signal block for an 8-bit computer shown in figure 1. The system consists of a register file made up of 4 8-bit registers (D Flip-Flops with Clock and Enable), and an ALU.

The system is driven by 10 control signals C[9:0]. The system is supposed to perform logical AND, OR, XOR, NOT operations, as well as arithmetic ADD, SUBTRACT, and PASS according to the instruction specified by bits C9-C6. It is supposed to read data in from 2 sources specified by C5 C4 and C3 C2 respectively. After operations are performed data is to be stored in one of the registers in accordance with bits C1 and C0. The task at hand is to design the above system with components such as gates and multiplexers in accordance with specifications.

DESIGN PROCESS:

The first thing was to draw a large-scale block diagram (figure 1). Since the data to be loaded into the registers can come from memory (via a bus) or from the ALU, a 2:1 multiplexer must be used to select the source. Data from the registers can be stored in memory or in another register, or it can go to the ALU to be manipulated. A 4:1 multiplexer is used to determine which register can write to the bus, and since more than one device can write to the bus, a 3 state buffer must be used on the mux output as well. If we want to manipulate data in the ALU, we need to bring it into the ALU first. To do that, we used 2 4:1 multiplexers, each of which selects one of the 4 registers to pass to the ALU. The output of the ALU can only go back to the register file, and the enable lines on the registers decide which register will receive the data on the next rising clock.

Next step is to identify all of the control inputs. Those are the 4 enable lines of the registers (LD_R0-LD_R1), the multiplexer control lines (S0 S1, A0 A1, B0 B1, LD_SEL), the control line on the 3 state buffer (DRVBUS), and the control lines of the ALU (U2-U0)

Once those inputs are identified, the most important truth table can be assembled (figure 3). This truth table contains all of the outside control signals, as well as the ones on elements that were added to complete the design. We later used this truth table, and truth tables, which specify ALU operations, and register selections (figures 4 and 5), to come up with equations for the internal control inputs in terms of the outside inputs C9-C0.

Next step is to design the internal logic for the ALU. This ALU will consist of 2 main parts. An arithmetic unit is needed to handle addition, subtraction and passing of values, while a logic unit I needed to handle logic operations such as AND, OR, and NOT. To design the arithmetic unit, we use a full adder. We first used the truth table in figure 6 part 1 to come up with the inputs which vary according to operation being performed. To add, the unit receives A and B. To subtract, it receives A and the complement of B, and the Carry In is set to 1. If we simply want to pass a variable, we add 0 to it, and output the sum. We used the truth table and a K-Map in figure 6 part 2 to derive the logic unit. Then the outputs of the logic and arithmetic units had to go to a multiplexer to decide which one will be outputted, based on the kind of operation performed.

CONTROL BLOCK:

After designing the ALU (figure 2) it was time to derive the control signals. The main truth table in figure 3, as well as every other truth table was used for that purpose. We started at the ALU. First thing we noticed is that the control bit for the 2:1 multiplexer was 0 if the operation was arithmetic, and 1 if it was logic. That matched the control bit C9. In similar fashion, the other 3 bits controlling the ALU (U3-U0) were exactly same as C8-C6. Also, based on truth table in figure3 and K-Maps in figure 6 we obtained the following equations for internal control signals:

U0 = C8

U1 = C7

U2 = C6

B0 = C3

B1 = C2

A0 = S0 =C5

A1 = S1 =C4

DRV_BUS = C7 + C9’C8’C6

LD_SEL = C8C7’ +C9

LD_R0 = (C9C8C7C6’) (C1’C0’)

LD_R1 = (C9C8C7C6’) (C1’C0)

LD_R2 = (C9C8C7C6’) (C1C0’)

LD_R3 = (C9C8C7C6’) (C1C0)

In this particular design we had a choice of either routing data from one register into another through the ALU, or using the BUS. We used the BUS.

CONCLUSION:

This project proved to be a lot of help in understanding how to arrive at control signal design. The most difficult, and crucial part of this design was the main truth table (figure3). This truth table holds almost all the information needed to complete the project. Some of the information had to be omitted in that truth table, and put in others, just because the size of the main table was getting unmanageable. A lot of time and effort went into designing the system, but the logic of computer systems like this 8-bit data processing unit seems a lot clearer now.

