INTRODUCTION:

In this project, the task is to design a microprocessor unit capable of handling a binary search routine. The CPU can be either a general-purpose register, or an accumulator unit. The instruction format, addressing modes, and instructions supported are to be determined, however the CPU must be able to handle a binary search routine on hexadecimal data.

PROBLEM DESCRIPTION:

The task here is to design a CPU using valid assembly language instructions, and operations that would implement a binary search routine. Binary search is performed on pre-sorted data. Midpoint of the array of data is checked against the value being searched. If the value is greater than the midpoint, the lower half of the array is ignored, and a new midpoint (half way through the remaining data) is checked against the value we are looking for. This process is repeated until either the value is found, or we run out of data, without finding the value.

HIGH LEVEL CPU DESCRIPTION:

Our CPU consists of 2 data registers, AC and DR. AC is a shift register, capable of performing an arithmetic shift right (divide by 2) while DR is a regular f/f register. Most computations are handled in the ALU, connected to the registers by busses. Instructions for this CPU are stored in memory, and delivered to the Address Register (AR), Program Counter (PC), and Instruction Register (IR) by a common bus. IR is linked to a decoder (4 X 16) which decodes the instruction, and plugs into Control Logic along with outputs of the Sequence Counter (see figure 4) and the M bit(see addressing modes below). The CPU runs instructions sequentially. The instruction allocation starts at address $00, while the data section in memory starts at address $80. The CPU runs the search program as lined out in figure labeled “assembly code for binary search”.

· INSTRUCTION FORMAT: For this CPU we used a 13 bit instruction. WE used bits 0 – 7 to specify one of 255 memory locations, bits 8-11 to specify the opcode, and bit 12 (the M bit) to specify the addressing mode. (see figure 5)

· ADDRESSING MODES: Our CPU supports 2 addressing modes; direct and indirect. In direct mode, AR contains the address of the operand, while in indirect mode, AR contains the address of the address of the operand. Clock cycle T3 is when the effective address of the operand is fetched to AR if the M bit is set.

· INSTRUCTION SET: Our CPU supports 9 instructions (see figure 6). These instructions are used to perform the binary search routine.

HARDWARE DESIGN:

Our CPU has 2 data registers, which are connected to the ALU to perform arithmetic operations. Result is not feed back to the ALU, but pushed back onto the common bus. One of the inputs of the adder inside the ALU is AC, the other varies depending on the operation performed. (see figure 2). Every logic operation arithmetic operation happens inside the ALU, except for incrementing PC, and left shifting AC. Those 2 operations happen inside the respective registers.

Figure 7 describes all the RTL statements, and when they happen. All operations in the CPU happen in accordance with those statements.

The Control Logic drives all the operations in the CPU. The control logic unit accepts inputs from the decoder feed by IR, the M bit, and the sequence counter. The sequence counter is a counter connected to a 3X8 decoder (see figure 4). The outputs of the sequence counter are clock pulses T0 – T5. Every operation in the CPU happens at one of those clock edges. Based on the inputs, and RTL statements, we came up with equations for the control logic block. (see figure 9)

CONCLUSION:

The hardware implementation of this project was pretty helpful in understanding how a CPU and memory interact. We were not clear, however, on the implementation part of this project. By simulation we understood writing, and running a C++ program that would imitate how the CPU would react to the binary search routine. We did not realize that simulation meant creating a virtual CPU in C++, initializing all it’s registers, and simulating RTL statements. Since advanced programming is not a pre-requisite for Computer Systems Architecture, and having limited programming experience we felt that building a simulator in C++ was a little unfair of an assignment. We performed a simulation of a binary search routine used by our CPU. The source code and results of that simulation are on the back of this report.

