The University of Michigan - Dearborn The Electrical and Computer Engineering Department ECE 372 - Fall 2002

Post-test

Dr. A. Shaout

Student Name:

Rules: No uses of calculators, and sign Honor Code.

- (1) Write an assembly program that will add the contents of 32 memory locations starting at memory location \$0910. Assume that the final sum does not exceed 8 bits and store the result at memory location \$0940. Start your program at memory address \$100C.
- (2) Add the following decimal numbers (- 27 and 117) using 8-bit 2's complement. You must give the result as an 8-bit 2's complement number.
- (3) Represent the following decimal numbers as HEX numbers:
 - a) + 19
 - b) 120
- (4) Hand assembles the following code segment. Make a listing like that provided by the assembler programs.

	ORG	\$1000
VAR	FDB	\$3000
TOP	LDX	#\$2000
	LDAA	-17,X
	LDY	\$3000
	LDAA	VAR
	LDAB	#47
	TSTB	
	BEQ	TOP
	SWI	

- (5) Write an assembly programming for the following:
 - a- Increment the 16-bit number AEEE stored in locations \$2000 (high byte) and \$2001 (low byte).
 - b- Subtract CCDD 1010 stored in locations \$2000 (highest byte) \$2003 from FF32 1004 stored in locations \$2004 \$2007; Store result in \$2008 \$200B.
 - c- Perform an arithmetic right shift on C012 stored at \$2000 (high byte) \$2001

- d- Configure PA7 for output. Write a 1, then a 0, and then a 1 to PA7 without modifying any other pins of Port A.
- e- Which instruction is used to globally un-mask interrupts?
- (6) Write an assembly program for the system so that Port B keeps outputting the values of the switches from Port C.
- (8) Given the following information, write an interrupt service routine for OC1 that will decrement the 16-bit variable COUNT every 20 msec.

TOC1	EQU	\$1016
TMSK1	EQU	\$1022
TFLG1	EQU	\$1023
OC1F	EQU	%10000000
OC1I	EQU	%10000000
20MS	EQU	40000