ECE 473 - Embedded Systems 
Lab #3:  Multi-threading and Inter-thread Communication

Due Nov. 25, 2002
Lab Purpose: 

· To implement a simple multi-threading application 

· To implement reentrant code used in inter-thread communication 

· To implement interrupts from C 

· To become familiar with writing programs for EEPROM (no Buffalo) 

Administrative Details: 

· You may work with one other person on this lab. 

· All code must be written in C and demonstrated on an HC11 / HC12 board. 

· Your final demonstration program should be loaded into EEPROM instead of Buffalo.  When your board is powered up, it should immediately begin running your code. 

· You must turn in a copy of your self-documenting source code (comments will be graded).  You do not need to turn in a report other than your code. 

· Get threads working first before adding the FIFO part.  If program is completely functional, except without FIFO, grade will be 90% (i.e. 10 points for FIFO). 

· If program is completely functional, except running under Buffalo, grade will be 90% (i.e. 10 pts for EEPROM). 

Task: 

Your program will consist of six parts:  Three main threads, one ISR, a global FIFO buffer of 10 bytes and semaphore routines.  These should be in three separate C files:  lab3.c (main threads and ISR), fifo.c and semaph.c. 

lab3.c should have the following components: 

· Thread 1 - Loops infinitely, doing the following: 

· Print "Thread 1 Iteration #n" where n is the number of times Thread 1 has looped. 

· Send the message "T1 has executed n times" to the FIFO.  Again, n is the number of times Thread 1 has looped. 
 

· Thread 2 - Loops infinitely, doing the following: 

· Read the FIFO until the entire Thread 1 message has been received. 

· Print "Thread 2 received:  FIFO message" (i.e. print what was received from the FIFO) 
 

· Thread 3 - Loops infinitely, doing the following: 

· Print "Thread 3 is printing" 
 

· OC1 ISR - The OC1 ISR should run every 10ms and will be a round-robin thread switcher.  Every time it runs it should switch from the current thread to the new thread (T1, T2, T3, T1, T2, T3, T1, . . .) 
  

· msg_out function - This function will be called any time a thread needs to print to the screen.  It must be reentrant, and must use the binary semaphores Bwait and Bsignal to make sure that only one thread at a time is actually printing to the screen.  (In other words, while a message is being printed to the screen, all other threads must be prevented from doing so.) 

· Function Prototype:  void msg_out (char *msg_ptr) 

· Example sequence: 

                  Bwait(&SCI_sem); 

  ... print entire message ... 
Bsignal(&SCI_sem);
· Note:  Since IAR does not accept the "asm" command, the following functions should be used to read and restore the stack pointer, and to execute the RTI instruction..  (Link to the functions) 

  
unsigned char *Get_SP(void);  // Returns current SP 
void Put_SP(char *new_SP);    // Modifies SP to new_SP 
void Do_RTI(void);            // Executes RTI instruction
10-Byte FIFO (fifo.c): 

The buffer should be implemented as a Two-Pointer / Counter FIFO (see pages 209-210).  It's details should be hidden from modules using it, and the interface to it will be via three routines:  InitFIFO, PutFIFO and GetFIFO.  Each of these routines must return an error code to the calling module, and they must ensure that no data is placed into a full buffer, and that no data is returned when the FIFO is empty. 

Note:  The FIFO routines should be implemented in their own C file.  This will make global variables available to all routines in this file, but invisible to modules calling these routines. 

Since these three routines will be in a separate file, function prototypes for them must be included in the header file fifo.h.  This header file must be included in your lab3.c file. 
 

semaph.c 

This file will have the C functions Bwait and Bsignal.  Make sure that Bwait is reentrant by disabling and enabling interrupts at the appropriate places. 

Since these two routines will be in a separate file, function prototypes for them must be included in the header file semaph.h.  This header file must be included in your lab3.c file. 

Note:  In the IAR compiler, the "enable_interrupt()" and disable_interrupt()" functions simply execute "CLI" and "SEI".  If a  "CLI" instruction is followed immediately by an "SEI", this does not allow interrupts to come in! 

So, when using IAR, make sure to add a line of code in between the enabling and disabling of interrupts.  See the example below: 

C code:                            Compiled assembly code: 

enable_interrupt();             cli 
disable_interrupt();            sei
This should be changed to something like 

enable_interrupt(); 
temp++;                // Meaningless code 
disable_interrupt();

Notes on Replacing Buffalo 

You should first get your code running under Buffalo. 

Once your code is working, you need to make sure you have done the following before putting it into EEPROM: 

· Have code to initialize SCI (BAUD rate 9600, enable transmit and receive, etc.) 
(You can have this code in while working under Buffalo, since it won't be changing anything.) 

· Take care of initializing the Interrupt Vector Table (instead of the jump table) 

· Change the memory map (for code only) to point to 0xE000.  In IAR, this can be done by simply changing the form CMD_RAM to the CMD_ROM xcl file. 

To get your code into EEPROM, simply use the AxIDE program that came on your disk from Axiom.  This is also available on the class web site if you need it. 

To download your code using AxIDE, follow these steps: 

· First, choose the "Configure" option and follow the directions.  Make sure that none of the boxes are checked in the configuration window that comes up. 

· Then, choose the "Program" option and follow the directions.  Make sure to select "Program External EEPROM" before downloading code. 

· Finally, when done programming, make sure to remove JP1 and JP2.  Your code will not run with those on! 

When you need to put Buffalo back on, just reprogram EEPROM with buf34.s19, which is also on the disk.

