ECE 473 – Embedded Systems

ECE 473 – Embedded Systems

Mid-Term Exam

Wednesday, October 25, 2000

Notes:

· Do all your work on the exam answer sheets. No credit will be given for any work done on this exam paper.

· Turn in both the answer sheets and the exam when you are done.

· Show all work. Partial credit will be given.

1) Problem 1 (10 Points):

Assume all chips for this problem have the following characteristics:

 IOH = -3mA, IOL = 30mA
 IIH = 0.3mA, IIL = -1.0mA
 ICC = 40mA

a. How many inputs can a single output drive under worst-case conditions? Show your work.

b. Draw a diagram showing the direction and amount of current flowing along each wire for a high (logic 1) output connected to n inputs. Make sure to show how much current is flowing along each wire.

2) Problem 2 (15 Points):

a) Assuming a The following function will not work correctly. Explain why and show how you would fix it.

/* Function add_num */

/* Input: 16-bit positive (unsigned) integer n */

/* Return: 16-bit unsigned number = n+(n-1)+(n-2)+…+2+1 */

unsigned int num;

unsigned int add_num (unsigned int number)

{

if (number <= 1)

return(number);

else

num = number + add_num(number – 1);

return (num);

}

b) The code below calls the function given in a). Using this code and the corrected add_num() function, show the contents of the stack when the execution is right before the return(number) line indicated above.

void main (void) {

add_num(3);
 … more code

}

3) Problem 3 (15 Points):

Your main() code has access to an imaginary function called printstring(). It is called as shown below. The purpose of this function is to print a text string out to the screen.

int valid_return;

valid_return = printstring(“Hello World”);
You are to design a complete layered software system, including the printstring() function as well as any initialization code, that will allow a text message to be printed to the screen via the SCI port. You will be using this on a 68HC11, but code should be as portable as possible in case you need to transfer it to another CPU. You may assume all communication between “layers” is done using normal function calls (do not worry about “gates”).

For your answer, you need to define the following:

· all software layers that are required

· all software modules with their function prototypes (interfaces)

You do not actually have to write the code for this but you should end up with a diagram that shows each layer, the modules within that layer and the function protocols for those modules.

4) Problem 4 (15 Points):

The following 68HC11 assembly code calls function1. The C skeleton for function1 is shown below.

ldx
#variable1

pshx

ldx
variable2

pshx

jsr
function1

unsigned int function1 (int *var1, int var2)

{

int temp1, temp2;

temp1 = *var1;

temp2 = var2;

...

}

Using 68HC11 assembly language, write the assembly skeleton for function1 that will perform the equivalent function as the C skeleton above. Make sure to include the function return. Show all work for full credit.

Problem 5 (15 Points):

The background loop in a foreground / background system requires 90ms to complete if it is not interrupted. The flag DATA_RDY is polled once during this background loop. If it is set, the system must respond and read in the data that is ready.

The foreground loop in this system runs every 60ms and requires 30ms to complete. Context switching time takes 1ms.

Calculate the worst-case response time of the system to recognize the DATA_RDY flag (i.e. time from flag set to flag recognized). You must show your work for full credit.

5) Problem 6 (15 Points):

a) Define the three situations that can make a function non-reentrant.

b) Using either 68HC11 assembly language or C (compiled for the 68HC11), write routines for the following binary semaphore functions:

· void bwait(char *S)

· void bsignal(char *S)
6) Problem 7 (10 Points):

You have a software system that uses the following interrupts: OC1, IRQ and SWI. The interrupt vector addresses and Buffalo jump table addresses are given in the following table.

	Interrupt
	Vector Address
	Buffalo Jump Table Address

	OC1
	$FFE8 - $FFE9
	$00DF - $00E1

	IRQ
	$FFF2 - $FFF3
	$00EE - $00F0

	SWI
	$FFF6 – $FFF7
	$00F4 - $00F6

Using 68HC11 assembly language, show how you would set up interrupts so that they will run correctly

a) Under Buffalo

b) From EEPROM (without Buffalo)

7) Problem 8 (5 Points):

There are two basic models for context switching in an interrupt-driven system. They are 1) stack based and 2) TCB based.

a) Explain the difference between the two models.

b) For both models, give an example of a scheduling strategy that would be likely to use it.

Answer Part b) here

3
3

