1. Introduction

Over the past few years, there has been an explosion in the popularity of digital multimedia content. The increasing power of personal computers, advances in software technology, and the expansion of the Internet have led people to transfer all varieties of multimedia works to their digital devices. For example, many people regularly copy songs to their home computers or record television programs with digital VCRs.

As time continues to progress, so does the technology. New algorithms are always being developed to store multimedia content in a more efficient digital form. For instance, the majority of all computer audio used to be stored in an uncompressed pulse code modulated (PCM) format. This format was highly inefficient in terms of storage space for high quality audio. Over the years, algorithms were produced that could significantly compress the size of audio data while retaining a high quality sound.

Perhaps the most significant of these audio formats was the MPEG-1 Layer 3 (MP3) compression scheme. Becoming popular in the late 1990’s, this format enabled consumers to store extremely high-fidelity audio on their computers within a fraction of the size of uncompressed audio. For the first time, many people were able to store large collections of their favorite music in a centralized location (on their PCs). However, over time it became clear that there was room for improvement over MP3. For example, MP3 audio requires more storage space than that needed by newer algorithms, and any use of the MP3 format requires that licensing fees be paid to small group of companies.

The open source software community, a large collection of software developers who produce free software, stepped forward to address the limitations of the MP3 format. Under the organization of the Xiph.Org Foundation, a new audio format called Ogg Vorbis was conceived. Using improved algorithms, this format generally can produce higher quality audio than MP3 at a given file size. Furthermore, keeping with the ideals of open source software, the format is completely free to anyone who wishes to use it. This means that both software developers and consumers can store and play audio in the Ogg Vorbis format without paying a single dime.

Another area that has seen tremendous development in recent years is the field of embedded systems. Devices that were once simple in design are being given powerful microprocessors that enable them to provide more features and interact more intelligently with the user. There are countless examples of embedded systems, ranging from cellular phones to microwaves to radios. Each of these systems helps to improve the quality of life or enjoyment of the consumer.

Devices that are designed to play audio are especially suited for embedded development. CD players are inherently digital, and other devices like radios and recorders can benefit from the audio processing capabilities of an embedded CPU. With the advent of new audio compression formats, an entirely new class of embedded digital audio systems has emerged. For example, dozens of embedded audio players exist to play music or record sounds in the MP3 format.

In contrast, virtually no embedded systems currently exist that can play audio in the Ogg Vorbis format. Despite the technical superiority of Ogg Vorbis audio and the lack of licensing costs, no popular dedicated audio players exist for Ogg Vorbis. This can be attributed to the fact that Ogg Vorbis is a relatively new standard. Furthermore, more CPU power is needed to decode Ogg Vorbis than MP3 with many decoders.

To help address the issues mentioned above, the project documented in this report was undertaken. The goal of the project was to produce an embedded Ogg Vorbis audio player. By designing the project work in an embedded system, a variety of implementations are possible. For example, the system could be made into a fully portable audio player or placed within a car. The potential for different applications is one of the key aspects of this project.

It is believed that the project will fill two important needs. The first is the need for the distribution of an enhanced audio format. Consumers want to store more, higher quality audio on their devices, and an embedded Ogg Vorbis player will enable them to do just that. Second, there is the universal need to reduce cost. By using an open audio format like Ogg Vorbis, no licensing fees will have to be paid. This provides a clear benefit to any corporations, consumers, or developers who wish to make use of an efficient, high-quality audio format.

2. Problem Statement

Many challenges had to be overcome in the development of the embedded Ogg Vorbis audio player. To help reach the main goals, a number of design requirements and specifications were produced. Different problems had to be solved to implement each of the requirements.

The overall objective of the project was to produce an embeddable digital audio player that supports playback of Ogg Vorbis audio. The system had to be capable of reading audio files from CompactFlash memory cards. To interact with the user, the system had to use a LCD display and several push buttons. The audio outputted from the system had to come from a standard 2.5 mm jack, which supports most headphones. Finally, it was hoped that as much open source software as possible could be used to implement the system. This would reduce the cost for the developers and help support the open source community.

From the overall objectives of the project, a number of requirements and specifications were produced. First, the system had to support playback of the most common formats of Ogg Vorbis audio. More specifically, the system must be capable of playing 8-bit or 16-bit audio in stereo or mono with a sample rate from 11 kHz to 44 kHz. Additionally, the system must be able to decode and play the most prevalent bit rates of Ogg Vorbis audio in real time, i.e. 32 kilobits per second (kbps) to 192 kbps.

There were also several requirements related to memory cards. The system had to support the FAT16 file system, which is a standard file system used on most CompactFlash cards. As a corollary, the player had top be capable of reading the directory structure and long file names supported by FAT16. Another requirement was that the supported memory card size had to be at least 64 MB, which is enough for over two hours of audio at a bit rate of 64 kbps. Finally, the memory cards had to be hot-swappable, meaning they could be inserted or ejected without restarting the system.

Four standard play modes were also defined in the requirements. These modes consist of once, repeat, sequential, and random, which correspond to the play modes commonly available on other audio players. The play modes had to work on an entire directory of Ogg Vorbis files. Additionally, it was desired to support the creation of custom playlists that contain files from different directories.

Since the goal was to produce an audio player, a number of audio control requirements were produced. For example, the user had to be able to stop or start playback of the audio at will. In addition, the ability to pause and seek through a song had to be given to the user. Finally, the user needed to have complete control over the volume of the audio playback.

Certain performance requirements were also specified. For instance, the system had to respond to user input within 0.25 seconds. This means that whenever a user requests a certain operation to be performed (e.g. read a directory or pause playback), it should be completed in 0.25 seconds or less. It should be noted that this requirement does not include the time for buffering, which is dependent on the speed of the CompactFlash memory card.

Finally, the memory requirements for the system had to be listed. Since the player is intended to be use in a dedicated, embedded system, the memory usage had to be kept to a minimum. This would reduce the cost of any mass-produced design. It was decided that a maximum of 4 MB of ROM should be used to store the executable code for the system. For the system RAM, it was hoped that no more than 16 MB would be used for both buffering the audio and holding the running program.

2.1 Tasks Assigned to Each Team Member

Trang’s most important task was to work on the player application with Jason. Her responsibilities were to write code to handle push button input and LCD output. She also was assigned to obtain a CompactFlash memory card and reader for the team. Finally, she was also responsible for documenting the team’s progress in a log notebook.

Luke’s task was to work on the operating system. His main responsibilities were to write the audio device driver and work on the PCMCIA (CompactFlash driver. He also had to make sure that all necessary features of the operating system kernel were tested and debugged. Furthermore, he was responsible for porting the Ogg Vorbis decoder to the microcontroller and configuring the microcontroller to work independently of a PC. Finally, he worked to integrate the player application with the operating system.

Jason’s primary task was to work on the player application with Trang. His specific responsibilities were to create the framework for the multithreaded player application and write the code for controlling audio playback and managing memory cards. He also was responsible for acquiring the development microcontroller, graphic LCD, and keyboard encoder. Finally, Jason had to work to integrate the hardware components and build the prototype case.

3. Design Choices and Performance Criteria

As with any design project, there were a number of design choices that had to be made. Some of the choices were trivial, whereas other influenced critical aspects of the project. The decisions made were based various criteria, such as performance requirements, hardware limitations, and time constraints.

The first important decision that was encountered was the choice of the operating system. There were three options available to the team. First, an open source operating system (Linux) could be used. Second, a commercial operating system, such as Windows CE, could be purchased. Finally, a custom operating system could be developed for the microcontroller by the team.

In the interest of time, the third option was eliminated. Producing a functional operating system in the span of a few months and implementing the other parts of the project would not be feasible. Using a commercial operating system was also eliminated due to the high cost and the fact that all the operating systems that were investigated did not have complete support for the microcontroller. Finally, Linux was chosen as the operating system. Although it needed some work to support the project’s application, the fact that it was free, had open source code, and a large user base for support led the team to choose Linux.

Another critical decision was required in the implementation of the audio device driver. To transfer audio samples to the audio chip, one of two common mechanisms could be used. The first was an interrupt-driven transfer, which uses CPU interrupts to send data to the audio chip. The second was a DMA-based transfer, which could send data to the audio chip without the intervention of the main CPU.

A DMA-based transfer would have a performance advantage over interrupt-driven transfer. However, it would also be more difficult to implement. The difficulty was increased by the relatively poor documentation of audio DMA transfer for the Hitachi microcontroller. After a few estimations and calculations were made (see the appendices), it was determined that the system had enough performance to handle an interrupt-driven transfer. Consequently, this method was chosen to send data to the audio chip.

During the initial planning of the player application, another choice had to be made. The application could be written as either a single-threaded or a multi-threaded program. In a single-threaded application, there would only be one path of execution. In a multi-threaded application, there could be multiple paths of execution occurring in parallel. The decision would significantly impact the coding of the player application.

Ultimately, it was decided to use a multi-threaded application. A number of criteria were considering in making this decision. First, the performance requirements mandated that the system be responsive to the user. In a single-threaded application, performance would be decreased by continual polling of system inputs and outputs. A multi-threaded application enabled the team to enhance responsiveness by setting up different threads to handle multiple tasks in parallel.

Second, writing code for a multi-threaded application would be simpler in many ways. It would enable the team to divide the code into better-defined sections that could be implemented simultaneously by different team members. This was helpful in reducing development time and improving the debugging process.

4. Design

4.1 Details of Design

Hardware Design:

The design of the project can be split between the hardware and software aspects. Although the project was primarily a software effort, a significant portion of time was spent planning and implementing the hardware connections in the system. Without a suitable hardware design, the software would meaningless.

The hardware block diagram of the system is presented below in Figure 1. It provides an overview of every major hardware component in the system and how they are connected. In addition, it provides an indication of how a user interacts with the system.

[image: image1.emf]Micro ATX Power Supply

Keyboard

Encoder

Hitachi

Microcontroller

Compact-

Flash

Card Reader

Optrex 128 x 64 LCD

Compact-

Flash

Card

Head-

phone

Jack

Headphones

AC Power

Push Buttons

Up One Level

Select

Up Arrow

Down Arrow

Right Arrow Left Arrow

Figure 1: Hardware Block Diagram

The heart of the system is the Hitachi SH7750 microcontroller. It handles all processing and manages inputs and outputs. It receives its power from a standard ATX power supply, similar to the one used in PCs today. The power supply gets it power from a regular 110 V AC outlet and provides 10 W of power for the system.

The CompactFlash card interface consists of the PCMCIA reader on the Hitachi microcontroller and a PCMCIA (CompactFlash adapter. Memory cards plug into the adapter, which is then placed into the PCMCIA slot.

A 2.5 mm stereo mini-jack is provided to output audio. The jack provides a 1 Vrms line-level output that can connect to most pairs of headphones or amplified speakers.

The push buttons are soldered to a small prototype board and are wired to the keyboard encoder. Each button forms a switch that is normally open. When a button is pressed, short between ground and an I/O pin on the keyboard encoder is formed. This causes the keyboard encoder to send a “make” code that represents the pressed button to the Hitachi microcontroller through a PS/2 cable. When a button is released, the keyboard encoder sends a “break” signal to indicate that the button has been released.

The LCD is a 128 x 64 pixel display that support icons, full-screen images, and graphical text. It has its own microcontroller that stores all images and enables serial communication with the Hitachi microcontroller. Serial communication occurs between the two microcontrollers using the RS-232 standard via three pins (TxD, RxD, Gnd) of a DB-9 cable. The power supply was wired to produce +5V DC for the LCD and its microcontroller.

The case for the prototype player hardware was constructed from acrylic plastic sheets that were glued together with epoxy. All of the components were securely screwed into the case in a fashion that provided ease of connectivity and accessibility.

Operating System Design (Audio Device Driver):

The software design effort was split between operating system and player application development. The operating system that was used was a port of the Linux 2.2.16 kernel to the Hitachi microcontroller. The port was made by Lineo several years ago and only has partial support for the hardware of the microcontroller.

The first major task was the design of the audio device driver for the operating system. The audio driver needed to support communication with the AD1881 audio chip through the interface provided by the HD64465 daughterboard of the Hitachi microcontroller. It was decided that the driver should implement the Open Sound System (OSS) Application Program Interface (API), a standard used by many other Linux audio device drivers.

The first portion of the audio driver design involved the setup of the audio support. This first required that the audio interface of the microcontroller be taken out of power saving mode. After that, the AD1881 chip had to be initialized so that only its output circuitry was powered up and so that it could support variable sample rates. In addition, the volume level of the AD1881’s outputs had to be set to some rather specific values. If the volume levels were not set correctly, the PCM output levels were either severely attenuated or filled with distortion.

Several functions had to be written to communicate with the AD1881 chip. The functions enabled the microcontroller to read and write registers that are located within the audio chip. Since the AD1881 supports the AC97 version 2.0 standard, these functions were linked with another driver (ac97_codec) already present in the operating system that supported AC97. By using this other driver, the need to write a volume control interface, or “mixer”, was eliminated.

Next, the interrupt system of the Hitachi microcontroller had to be initialized to fire an interrupt in one of two situations. The first situation is when the half of the audio chip’s four-sample FIFO buffer is empty. The other situation is when the FIFO buffer is underrun (not filled in time for sample output). In the process of interrupt initialization, the address for the interrupt service routine (ISR) is set up memory, but the interrupt itself is left masked until audio playback occurs.

The ISR was designed to work with a multi-buffering algorithm for output audio. This means that the number and size of audio buffers can be changed by altering only two lines of code. The ISR runs whenever half or the audio hardware’s entire FIFO buffer is emptied. This occurs whenever two or four samples of audio data are played, respectively. During the ISR’s execution, the FIFO is filled with the next samples from the one of the multiple audio buffers. If an entire buffer is copied into the FIFO to be played, the algorithm automatically switches to the next audio buffer. If there are no more audio buffers waiting to be played, the ISR disables itself, and audio playback stops.

Several other functions had to be written for the audio driver. There are functions for setting the sample rate and number of channels. There are also functions for starting, stopping, and pausing audio playback. Finally, there is a function that accepts blocks of audio data and copies them into one of the multiple audio buffers used for playback.

Operating System Design (PCMCIA (CompactFlash Device Driver):

The next major task of the operating system development was the design of the PCMCIA (CompactFlash memory card device driver. This driver provides a software interface to a CompactFlash memory card through an adapter in the PCMCIA slot. Without this driver, there would no way to input Ogg Vorbis files to the system.

Fortunately, Lineo’s distribution of Linux came with a driver for CompactFlash memory card support. However, the driver clearly wasn’t complete, as it had numerous bugs and limited the size of memory cards to 16 MB. To meet the project requirements, it was necessary to rewrite a portion of the driver.

The low-level portion of the driver, which communicates with the registers of the Hitachi microcontroller and CompactFlash memory cards, needed no modification besides a few minor bug fixes. The high-level portion of the driver, on the other hand, needed to be reworked to handle cards of any size and to do better error checking. This required several changes to the initialization code.

The setup functions were improved so that whenever a memory card is inserted, its registers are queried to determine the size of the card (in 512 byte sectors). Based on this information, variables are set that enable the Linux kernel to access the entire memory space of the card. In addition, changes were made to the code so that attempts to read or write beyond the memory space on the card are prohibited.

Operating System Design (Boot Sequence):

Lineo’s distribution of Linux came with a boot loader called LMON. LMON could be loaded into the flash memory of the Hitachi microcontroller to run Linux when the board is powered up. However, the boot loader would not work whenever a CompactFlash memory card was inserted, and it spent too much time loading unused data into RAM.

To correct these issues, the boot loader was rewritten. All of the code involving an interactive startup was removed, as was the code that dealt with CompactFlash memory cards. To further improve startup time, LMON was changed so that it only loads the flash memory containing the kernel and file system (plus a small amount of unused memory for a margin of error). Ultimately, this brought the startup time from approximately 20 seconds to 8 seconds.

Player Application:

The other portion of the software design involved the audio player application. This piece of software utilizes the services provided by the operating system to function as an interactive audio player. It was designed as a multi-threaded application, where each thread handles communication with one or more hardware devices. The overall organization of the application and its threads can be seen below in Figure 2.

[image: image2.emf]Output

Thread

Volume

Control

Detect

Memory

Card

Decode/Play

Ogg Vorbis

PCMCIA 

CompactFlash Adapter

Digital/Analog

Converter

Headphones

CompactFlash

Thread

Audio Thread

Read Files

from Memory

Card

CompactFlash

Card

Software

Hardware

Input Thread

User Input

Commands

Keyboard

Encoder

Push

Buttons

LCD

Controller

LCD

LCD Output

Figure 2: Software Block Diagram

The input thread is designed to receive commands from the keyboard encoder that correspond to one of the six push buttons. To prevent wasted CPU cycles, the input thread sleeps, or stays inactive, until actual input is received. When a command is sent to input thread, it wakes up and determines what command it is. Then the thread checks the display mode, player status, and error flags to determine how the command should be handled. If the command is audio-related, the input thread sets the required audio flags and wakes up the audio thread (if necessary). If the command is to set the volume, this is done immediately in the input thread. Finally, if the command requires that the LCD be updated, the input thread sets the necessary output flags and wakes up the output thread. The input thread will sleep until the output thread finishes updating the display. Once all input processing is complete, the input thread sleeps until the next command is received.

Like the input thread, the output thread sleeps until its services are requested. The output thread is dedicated to updating the LCD, and any other thread can wake it up. Once woken up, the output thread checks the output flags to determine if the whole screen needs to be updated. If it does, the function corresponding to requested screen is called to change the screen. Inside each function, player status and error flags are checked to determine what information should be shown on the screen. Then the necessary commands are sent to the LCD to update the text or images on the screen. If the whole screen does not need to be updated, the output thread checks for flags that specify that a particular part of the screen be updated. This capability is provided to increase the speed with which partial screen updates occur. Once the LCD has been updated, the output thread goes back to sleep.

The audio thread is used to implement the buffering of audio files and audio playback. It also stays asleep until it is needed. The only thread that can wake up the audio thread is the input thread. Once woken up, the audio thread first checks to see what file it is supposed to play. If the file isn’t buffered yet, it will copy the file to RAM. Then it proceeds to check if the file is a valid Ogg Vorbis audio file. If it is, the audio thread reads the audio format from the Ogg Vorbis file and sets up the audio driver accordingly. Next, it enters a loop in which it decodes chunks of Ogg Vorbis audio and sends them to the audio driver for playback. While spinning in the loop, it continually updates the decode time and checks for any change in the player status. In the case of a pause condition, the audio thread pauses audio playback and waits for receipt of the unpause flag. If a stop condition is received or the song ends, audio decoding and playback is halted. The last thing the audio thread does is check the player mode and status flags to determine if another song needs to be played. If one does, the audio thread restarts from the beginning. If there are no more songs to play, the audio thread goes back to sleep. In the case of any errors, the audio thread sets the corresponding error flags and tells the output thread to update the LCD.

The final thread is the CompactFlash thread. This thread has several purposes. First, it monitors the PCMCIA slot for the insertion or ejection of CompactFlash memory cards. This is done every 1.5 seconds and every 0.25 seconds, respectively. Whenever a card is inserted, it attempts to read the directory structure of the card. Provided the card has a valid file system, the directory listing in the playlist screen will be updated. If a card is ejected, the CompactFlash thread will remove the information about the previous card’s directory from memory.

All four threads are managed by the POSIX thread API. The thread scheduling was set up to use the standard Linux process scheduler. This is a priority-based time-sharing scheduler that assigns additional priority to a thread based on the time it has been waiting to run. Using this scheduling algorithm ensured that no thread would control the CPU and prevent other threads from running for any significant amount of time.

4.2 Design Tasks for Each Team Member

Trang Pham’s Design Tasks

For the first phase of the project, Trang assisted Jason with hardware selection and assembly. They had to evaluate what components would be needed to build an embedded system that is capable of playing audio files. In addition, it had to meet the other requirements of the project.

The second phase of the project was the design of the audio player application. Trang was responsible for the devising and programming the user interface, which includes the graphic LCD display and push buttons. The LCD is used to display a variety of items, such as menus, playlists, and song information. Trang had to come up with a way to display this information in a coherent and useful manner. The LCD output and keyboard input are used together to adjust player settings, view user menus, and play audio files. Design of the push button input for the player application was especially challenging, as each button behaves differently depending on which LCD screen is being displayed.

The third phase of project was the design and construction of the player case. Trang assisted Jason with this portion of the project. The team chose to use clear acrylic panels to build the player case. This solution and had three main advantages. First, it allowed the team easy access to the components for development and troubleshooting. Second, the front of the development board was easily accessible for memory card insertion. Third, the components were displayed in a neat and clean manner. All of these items were necessary to produce a case that was both functional and visually appealing.

Luke Reisner’s Design Tasks

Most of Luke’s design tasks were centered on kernel development for the Linux operating system. He also did some work on the player application. Finally, he had to make sure that the all aspects of the system would function properly when integrated.

Luke’s biggest task was to design and implement the audio device driver. The driver provided an interrupt-driven transfer mechanism to send audio samples to the AD1881 chip on the Hitachi microcontroller. The driver was coded to support 16-bit audio samples in stereo or mono. The code enables the user to choose a variable sample rate from 8 kHz to 48 kHz. In addition, a configurable multi-buffering scheme was implemented to enable the amount and size of audio buffers to be changed without rewriting the entire driver.

Another of Luke’s tasks was to redesign the PCMCIA (CompactFlash memory card driver. The purpose of the redesign was to dynamically detect the size of memory cards, support memory cards over 16 MB, and provide better error checking. Ultimately, all these features were added to the driver, and it was coded to support memory cards up to 128 terabytes (TB) in size (theoretically).

Creating and loading the file system and kernel image onto the microcontroller was another of Luke’s design tasks. A file system image was produced that would be loaded into RAM and provide storage space for buffered files. In addition, the file system was stripped of everything but the files and libraries needed to run the system. The file system also had to be configured so the player application would run upon startup. In terms of the operating system, a custom kernel was compiled that would use minimal memory. Once the optimized kernel and file system were completed, they were loaded into the nonvolatile flash memory of the Hitachi microcontroller.

Luke also had to change to design of the boot loader so it would boot the system faster. This required the removal of extraneous code that checked for memory cards and user input and the optimization of the flash loading routines. The result was that the boot time improved from about 20 seconds to 8 seconds.

For the player application, Luke designed some of the more complicated routines. This included the random play mode support and directory navigation. In addition, he worked on some of the user interface screens for the player.

Finally, Luke made sure that the player application could be ported from a standard PC to the microcontroller. He tested all of the various system resources (I/O ports, thread library, etc.) to ensure that they would work as intended on the Hitachi board. He also made sure the Ogg Vorbis audio decoder, called Tremor, would compile and run on the microcontroller’s CPU.

Jason Winchell’s Design Tasks

For the first phase of our project, Jason was responsible for project hardware selection and interconnection. This involved two main tasks. First, he had to evaluate what parts would be necessary to build an embedded system that could play Ogg Vorbis audio files and meet the other design goals. Second, he was faced with the challenge to acquire these components at a cost that the group could afford.

The second phase of the project was the design of the audio player application. Jason was responsible for the overall layout and functionality of the player application. The player application was developed on Jason’s laptop, which was running Red Hat Linux 8.0 as the primary operating system. This made the development board available to Luke for Linux kernel development and allowed Jason and Trang some freedom on the location in which the player application development was taking place. Player application development included decisions about which player features were feasible, the design and coordination of the application’s threads, memory card management, and playing audio files.

The third phase of project was the design and construction of the player case. Originally, a Flex-ATX PC case was purchased from eBay for use with the project. However, while planning the layout of the components in the case, it quickly became apparent that the purchased case would not be suitable for the task. For instance, it prevented the user from accessing the front of the development board to insert the memory card. Furthermore, it did not allow easy access to the player components. Consequently, Jason chose to design and build an acrylic case as an alternate solution. This was a very effective solution with three main advantages. First, the acrylic case allowed the team to access the player components for development and troubleshooting. Second, the new case provided a neat and attractive appearance. Finally, it provided easy access to the front of the development board so that memory cards could be inserted without obstruction.

4.3 Final System

A number of tasks must be completed before the results of the product can be placed on the market. Most importantly, additional work is needed to adapt the current design to work as a portable hardware solution. In addition, more software testing would be useful, and other enhancements could be made to the player in order to increase its market appeal.

Design and production of the player’s main PCB board will be done using professional PCB design software. This software is supplied by the PCB fabrication house and can be used for little or no cost as long as the fabrication house gets the contract to manufacture the PCB’s. Some of the design considerations that need to be taken into account when designing a PCB board include board size, trace width, pad sizes, hole spacing, and hole sizes.

The same company that does the PCB fabrication can do the installation of the player components. Player cost will largely be determined by the player component cost. In order to reduce the cost, it will be very important to get bulk pricing on the player components. The components will be purchased in quantities of 1,000 to achieve the cost objectives.

Design and production of the player case will need to be outsourced to a plastics prototype manufacturing company. The player case will need to be small, similar in size to a standard PDA case. The cost for the first prototype will be expensive, but all subsequent cases manufactured will be very cheap. If there is a demand for more than 1,000 units, it should be easy to order another batch of cases.

In order to increase the versatility and appeal of the group’s player, a TFT active matrix display may be integrated with the unit. This would require the development of a new graphical user interface for the new LCD. One possible solution for constructing a graphical user interface is QT. QT is a graphical user interface framework, commonly used with the Linux operating system.

In terms of the software, more testing and debugging should be done before the release of the final product. Although the system received a significant amount of testing throughout development, it is likely that a number of bugs are still hidden in the code. Having a larger group of people test the product before release to market would be a wise decision.

One possible approach to testing the code is to have a beta period. A beta period is a portion of time before the main release in which actual users can try out the system. There are several possible ways a beta period could be handled. For instance, since the player application was originally written on a standard PC, it can be easily ported back to a PC. At this point, the software could be released to the general public (i.e. open source community) for testing. Another manner in which a beta period could be carried out is by distributing a limited quantity of pre-production models. These units could be given to advanced users with the capability to find and report bugs in the code. By offering the units to the advanced users at a reduced price, it is likely that they will be willing to contribute their time and effort.

The standards for the final software are the same as the goals for any software application. It should work as expected, free of bugs or inconsistencies. Of course, it is not feasible to eliminate every bug. However, by focusing on the primary aspects of the code, most of the major issues can be eliminated.

If a demand exists, additional features can be added to the software of the project. For example, custom playlist or audio equalization support could be added to the player. It may be helpful to ask potential customers what capabilities they would like the final product to have. Of course, the addition of new features will further extend the test and debug procedure.

A website must be set up that is dedicated to the player. On this web site, users will be able to access information about the product. A support section will be constructed that contains documentation, FAQ’s, and message boards. In addition, full source code for the audio player will be available to the public. This will enable advanced users to contribute to the development of the player by adding features or fixing bugs.

4.4 Socio-Economic Issues

4.4.1 Detailed Cost Analysis

For the cost breakdown, it is estimated that 1,000 units will be sold in the first year of production. This number was chosen because of a growing demand for an embedded Ogg Vorbis audio player. In addition, when parts are purchased in quantities of 1,000 or more, substantial reductions in cost can be obtained. The cost of the project is analyzed below, and a more detailed analysis can be found in appendix 8.7. Careful analysis of this data is important because the product should be marketable. In order to achieve this, the cost of a production product must be in the price range of comparable products.

Furthermore, the sale of the product should be profitable. To meet this requirement, all of the individual costs involved in developing the system have to be assessed and tabulated. This enables the group to set a sale price that will recover the investment costs. Also, with the expenses clearly defined, the group can spot and eliminate any wasteful areas to improve the market price of the product.

The group’s prototype development costs were approximately $13,210. The portable unit development costs should be approximately $11,760. The group is also assuming a production cost per unit of $97 and a sales and distribution cost per unit $29. For 1,000 units, these costs will be $97,000 and $29,000, respectively. With a sale price of $249.99, the sale of 1,000 units should yield a total profit of $99,030.

4.4.2 Economic Benefits and Societal Impact

There are a number of possible benefits the project could have on society and the economy. One important factor is that the project will help to promote the spread of the Ogg Vorbis audio format. It may also have the effect of weakening the market for MP3. By helping to spread a superior audio format, people will be able to enjoy more or higher quality audio. In addition, the lack of any licensing fees will reduce costs for consumers and companies, perhaps leading to an improvement in the economy.

Another possibility is that by promoting Ogg Vorbis, Internet piracy of audio will be reduced (at least temporarily). Currently, the majority of pirated music on the Internet is in MP3 format. In order to obtain Ogg Vorbis audio files, most users will have to create them legally from CDs they own. As the popularity of Ogg Vorbis grows, it is inevitable that the piracy of the format will increase. However, in the short term it may prove to be quite beneficial for the music industry.

Finally, the project will be a benefit for the open source community. All of the source code for the player application and operating system will be made available to the general public on the Internet. Hopefully, other developers will be able to use the project’s code to create newer and better things.

4.5 Safety Issues

There are a variety of safety concerns and points of failure in the system. Most of them can be avoided by applying common sense. However, in certain situations, these issues could be hazardous to a person or the player itself.

Since the player runs on relatively low voltages (12 V or less), it is practically incapable of giving a serious shock to a user. However, care should be taken to keep the player away from water, which could damage the electronics of the system. Additionally, the player should not be dropped or met with any significant force.

To minimize the risk of damage from water or impact, the final system will be enclosed in a protective case. However, this will not completely eliminate the risk of damage. To help reduce the likelihood of harm to the player, a user manual will be written to warn users about the consequences of hazardous usage. In addition, a warning label may be attached to the product itself.

One big concern is the possibly of hearing damage. If the volume is too loud, the user’s hearing could be temporarily or permanently affected. To reduce the chance of this occurring, the default volume level will be sufficiently low. In addition, the user manual will include a section to educate users about the problem. Finally, the message may be included on a warning label on the product.

Another big risk is the possibility that audio playback may mask important sounds in the user’s environment. For example, if the user is driving a car, the audio may prevent him from hearing the sirens on an approaching ambulance. Although this may not seem very different from listening to a car radio, it’s possible that system may use a pair of headphones, which would further block the sounds of the environment. This issue could become a problem in any situation that requires a user’s careful attention.

To counteract the problem, a section in the user’s manual will be devoted to informing the user about safe practices while engaging in attention-critical activities. In addition, a warning label may be placed on the product. Hopefully, these messages will prevent any serious injury while using the player.

4.6 Packaging Issues

A website that is dedicated to player will be set up. The website will also offer player software updates and be the first point of contact for users needing documentation and technical support. In addition, the full source code for the player will be cleaned up and assembled into a downloadable package.

A user’s manual for the player must be written. In this manual, there will be complete operating instructions for the player. In addition, a section dedicated to warning the user about safety concerns will be included. A professional printing company will need to be contracted to handle creation of the printed manuals.

The design and production of the player case will be outsourced to a plastics prototype manufacturing company. This is necessary because they will be better equipped to handle the production of 1,000 or more cases. In terms of physical characteristics, the player case will need to be small, similar in size to a standard PDA case.

As mentioned in the final system section, a company will be contracted to manufacture the PCB’s. PCB manufacturers have a maximum size for a board they can handle. Typically, this is also their panel size. The PCB fabrication house's panel size is also important when mass-producing boards. In this situation, one would want to fit as many boards as possible on a panel with minimum wasted board space (in order to reduce costs). Normal board spacing for routing (how boards are separated on a panel) is 0.3". In addition, there is generally a 1.0" to 2.0" border on the board for handling it during processing.

5. Test Results and Discussion

During the implementation of the project, numerous tests were carried out to determine if the project requirements were being met. For example, the performance of audio playback was tested several times to ensure that real-time decoding and playback was possible at all required bit rates. The tests also showed that some of the tasks were not successfully implemented, but many of them were.

A selection of sample audio files was used to determine the audio format support of the player. The results showed that the player could support 8-bit or 16-bit audio in mono or stereo. In addition, sampling rates from 8 kHz to 48 kHz worked properly. Finally, it was shown that the system could decode and play audio files ranging from 32 kbps to 192 kbps in real-time.

Comparing these results to the project specifications, it is seen that all of the requirements for audio format support were met. In fact, the implemented features exceed the requirements. (The system supports sample rate rates beyond the range of 11 kHz to 44 kHz.)

A variety of tests were preformed to determine the level of CompactFlash memory card support on the system. For instance, the team attempted to read files from a 64 MB CompactFlash card. A number of different FAT16 directory structures were used, and many files with long files names were placed on the card. In addition, the memory card was inserted or ejected during various operations to determine the effect on the system.

The memory card tests showed that the system could handle memory cards up to 64 MB in size. Much larger sizes probably would have worked as well, but a memory card of a larger size was not available to the team. The system had no trouble navigating through all of the test directory structures and reading from files with long file names. Furthermore, the system seemed to have no problems with the memory card being swapped, except while a file was physically being read. Consequently, it was determined that all of the memory card requirements were met, with the exception of being able to recover from card ejection while a file is being read.

Player response time was tested by measuring the time it took to complete a variety of audio and general processing tasks. The longest tasks were those that involved audio playback. It was measured that some changes in audio playback (play, pause, and unpause) took up to 0.5 seconds. This is twice as long as the requirements specified, so the goal was not completely met.

Testing which play modes were supported was relatively straightforward. Each mode was set, and the songs in a given directory were played. It was clear that all four play modes (once, repeat, random, and sequential) were successfully implemented.

The various forms of audio control were tested as they were implemented. They were tested by requesting a given audio operation and checking to see if that operation was performed correctly. The results show that each of the implemented audio control features, such as stopping, playing, pausing, seeking, and volume control worked as intended. However, since no form of audio equalization of was coded, this was the one audio control requirement that was not met.

To determine the ROM memory footprint of the system, the size of the kernel and the file system image were calculated. They took up about 700 KB and 2.0 MB of space, respectively, resulting in a total ROM usage of less than 3 MB. Since this figure is under 4 MB, it meets the ROM requirement.

To determine the amount of RAM used by the system, the size of the audio file buffer and the player application’s memory usage were used. When summed together, the total was under 24 MB. This was slightly larger than the maximum requirement of 16 MB.

One big feature that was not implemented in the project was the design of portable hardware solution for the embedded Ogg Vorbis player. This would have required at least several more months of development, which simply were not available. As a result, the project only defines a very generic embedded system that would have to be extended in the future to work in a portable application.

Another feature that was not implemented was custom playlist support. In the current system, playlists are assembled from all of the files in a single directory. Consequently, the goal for creating custom playlists was not achieved.

A summary of the test results is presented below in Table 1.

	Test Results

	Plays 8 or 16-bit, mono or stereo, 8-48 kHz, and 32-192 kbps audio

	Handles directory navigation and long file names

	Works with a 64 MB memory card (in theory supports up to 128 TB)

	Memory cards can be swapped, except while buffering

	All audio operations occur in less than 0.5 seconds

	Handles once, repeat, sequential, and random play modes

	Supports volume control, stopping, pausing, and seeking

	Requires less than 3 MB of ROM and 24 MB of RAM

	No support for custom playlists or audio equalization

Table 1: Summary of Test Results

6. Conclusions

· The software implementation of the project was mostly successful

· The majority of the desired features were implemented

· The hardware design of a portable player did not as far go as originally planned

· Future work could be done to adapt the design to a portable player

· The project should help the spread of Ogg Vorbis and open source software

· Full source code will be made available to the public

· The push button layout worked very well as a simple, intuitive input mechanism

· The Linux operating system can be an excellent choice for embedded systems development

· The Hitachi SH7750 development board is a very powerful piece of hardware

· It could be used to extend the project to include PDA-like functionality

· The ease with which the Ogg Vorbis API can be used should make it easy to integrate into other products

6.1. Executive Summaries

Trang Pham

The project performed as designed with the exception that it is no longer a portable player. The audio player supports playback all common formats of Ogg Vorbis audio, including prevalent bit rates and sample rates. It was successfully able to read files from CompactFlash cards with a directory structure. Memory cards can be inserted or ejected at any time, except while buffering audio. The player application executed a user command in less than 0.5 seconds. This audio operation time is considered to take a reasonable amount of time. Also, the LCD updates the current player status with little time delay. The audio player supports common play modes such as once, repeat, sequential, and random; these modes are similar to ones in other audio systems. In addition, the audio player’s push buttons and LCD enabled the user to control various aspects of audio playback and player settings. These audio controls include the volume, stop, pause, and seek controls.

One of the initial ideas for the project was to have the ability to create custom playlists and support audio equalization. Unfortunately, due to lack of time for development, these features were not implemented. However, the sound quality was extremely clear, demonstrating how the Ogg Vorbis format can be more efficient than MP3 (i.e. producing higher quality audio at equivalent file sizes).

Overall, our project works as expected, but with a few minor setbacks due to unfamiliarity and lack of knowledge of the Linux operating system. We all had to learn how to work in Linux operating system, which was a new experience for all of us.

If any improvements are to be made to the project in the future, the replacement of the graphic LCD for one with touch-screen support would make the project more interesting. Also, at the top of the wish list is the goal to improve the design of the audio player by turning it into a small, portable unit.

Luke Reisner

The goal of the project was to produce an audio player that can be embedded in a number of different applications. The audio player was designed to play a new audio format called Ogg Vorbis, which has a number of advantages over other popular formats, such as MP3. For example, no fees are required to use the Ogg Vorbis format, which can reduce costs for the company. In addition, Ogg Vorbis audio has a level of quality that is superior to that of MP3 audio in many situations. This means that Ogg Vorbis support will appeal to the average audio consumer.

One possible implementation of the audio player would be a portable hardware unit. Although the design for a portable player was not completed, the current design could be extended to support this capability. Despite a growing demand for a portable audio player, no dedicated Ogg Vorbis audio player has been produced. Consequently, an investment in a portable player could prove to be a lucrative opportunity.

The player was engineered to offer a variety of features that would appeal to the average consumer. For example, the player supports four different play modes and can play hours of music from a single memory card. In addition, the user interface was designed to maximize the player’s simplicity and convenience. For example, a large graphic LCD relays all information to the user in a straightforward, menu-based system. All system functions are controlled by a set of six push buttons, which were configured to be as intuitive as possible.

The results of the project are very favorable. The software implementation went very well; a large number of common, useful features were added to the player. The hardware design, although not completed, should be easy to adapt to any number of marketable products. It is this author’s opinion that the company could benefit greatly by funding a project to extend the Ogg Vorbis player to work as a portable music player. The increasing demand for Ogg Vorbis audio, as well as the lack of licensing costs, could lead to very profitable audio player.

Jason Winchell

The overall objective of the project was to produce an embeddable digital audio player that supports playback of Ogg Vorbis audio. The system had to be capable of reading audio files from CompactFlash memory cards. To interact with the user, the system had to use a LCD display and several push buttons. The audio outputted from the system had to come from a standard 2.5 mm jack, which supports most headphones. Finally, it was hoped that as much open source software as possible could be used to implement the system. This would reduce the cost for the developers and help support the open source community.

For the first phase of the project, I was responsible for the project hardware. This included selecting the hardware, obtaining the hardware, and connecting the hardware together. For phase two, I was responsible for the overall design and programming of the audio player application. In the third phase of project, I designed and built the player case. Of course, all of the above tasks were done with the full cooperation and support from all the team members.

The group was able to develop an audio player that has an intuitive user interface. This user interface consists of a graphical LCD and six push buttons. I found that working in an open source software environment is both challenging and rewarding. The development involved using the GNU C toolkit in the Red Hat Linux operating system. Due to the physical size and power requirements of the development board, we were unable to make a portable design. However, the design could be adapted in the future to work as a portable player.

Overall, this project was very successful. We reached most of our design objectives, and the audio player produces music of excellent quality. The layout of the hardware and software lends itself to being intuitive and easy to use. The Hitachi development board is very powerful, and its functionality could be extended far beyond an audio player. Certainly this project could be expanded to increase the number of tasks the audio player is performing. Finally, the Linux operating system can be an excellent choice for embedded systems development, and the project should help the spread of Ogg Vorbis and open source software.

7. References

A variety of sources were used to gain insight into the project. Many of the resources come directly from hardware and software companies, whereas others come from technical references and users’ web sites. A list of these resources is found below.

1) A. Rubini and J. Corbet. Linux Device Drivers. 2nd Ed. O'Reilly & Associates, Inc. June 2001.

2) Butenhof, David R. Programming with POSIX(R) Threads. 1st Ed. Addison-Wesley Publishing Co. May 1997.

3) Silberschatz, Galvin, and Gagne. Operating System Concepts. 6th Ed. John Wiley & Sons, Inc. 2002.

4) Markel, Mike. Technical Communication. 6th Ed. Bedford/St. Martin’s. 2001.
5) US7750 Hardware Architecture Reference Platform User’s Manual. Hitachi Semiconductor, Inc. 3 December 2002. <http://ftp.hsa.hitachi.com/netshare/capp01/Aspen/Aspen_Users_Manual.pdf>

6) SH7750 Series Hardware Manual. 6th Ed. July 2002. Hitachi Semiconductor. 20 January 2003. <http://www.hitachi-eu.com/hel/ecg/products/micro/pdf/sh7750h.pdf>

7) HD64465 User’s Manual. 3rd Ed. March 2001. Hitachi Semiconductor, Inc. 14 January 2003. <http://ftp.hsa.hitachi.com/netshare/capp01/Tahoe/HD64465.pdf>

8) Ogg Vorbis Documentation. 19 July 2002. Xiph.org Foundation. 20 November 2002. <http://www.xiph.org/ogg/vorbis/docs.html>

9) Tremor Documentation. 3 April 2002. Xiph.org Foundation. 20 November 2002. <http://www.xiph.org/ogg/vorbis/download/tremor_cvs_snapshot.tgz>

10) LinuxSH Documents. LinuxSH. 15 December 2002. <http://linuxsh.sourceforge.net/docs.php3

11) Embedix Linux 1.0 User Guides. Lineo, Inc. 2000.

12) Sheldon, Ryan. Display Setup & Programming Guide. National Control Devices. 15 January 2003. <http://www.controlanything.com/manuals/DMF50426-7.pdf>

13) KE24 PC Keyboard Encoder Manual. Hagstrom Electronics. 2002.

14) Ippolito, Greg. YoLinux Tutorial: POSIX thread (pthread) libraries. YoLinux.com. 20 March 2003. <http://www.yolinux.com/TUTORIALS/LinuxTutorialPosixThreads.html>

15) blaiseb@llnl.gov. POSIX Threads Programming. Lawrence Livermore National Laboratory. 12 February 2003. <http://www.llnl.gov/computing/tutorials/workshops/workshop/pthreads/MAIN.html>

16) D. Marshall. Programming in C: UNIX System Calls and Subroutines using C. March 1999. Cardiff University. 3 March 2003. <http://www.cs.cf.ac.uk/Dave/C/CE.html>

17) The GNU C Library Reference Manual. Free Software Foundation, Inc. 7 February 2003. <http://www.gnu.org/software/libc/libc.html>

PAGE
25

_1111682744.vsd
�

 �

Adjust width of box to change paragraph width. Box's height adjusts according to text.�

�

�

�

�

�

�

�

Keyboard Encoder�

Hitachi Microcontroller�

Compact-Flash
Card Reader�

Optrex 128 x 64 LCD�

Up One Level�

�

Select�

Up Arrow�

Down Arrow�

Right Arrow�

Left Arrow�

Micro ATX Power Supply�

Head-phone
Jack�

Headphones�

Compact-Flash
Card�

AC Power�

Push Buttons �

_1111795385.vsd
�

Output Thread�

Volume Control�

Detect Memory Card�

Decode/Play Ogg Vorbis�

PCMCIA � CompactFlash Adapter�

Digital/Analog Converter�

Headphones�

CompactFlash Thread�

Audio Thread�

Read Files from Memory Card�

CompactFlash Card�

Software�

Hardware�

Input Thread�

User Input Commands�

Keyboard Encoder�

Push Buttons�

LCD Controller�

LCD�

LCD Output�

